

1.1

Introduction 2

1.2

The Changing Face of Computing and the Task

of the Computer Designer 4

1.3

Technology Trends 11

1.4

Cost, Price, and Their Trends 14

1.5

Measuring and Reporting Performance 24

1.6

Quantitative Principles of Computer Design 39

1.7

Putting It All Together: Performance and Price-Performance 48

1.8

Another View: Power Consumption and Efficiency as the Metric 56

1.9

Fallacies and Pitfalls 57

1.10

Concluding Remarks 65

1.11

Historical Perspective and References 67

Exercises 74

1

Fundamentals of

Computer Design

And now for something completely different.

Monty Python’s Flying Circus

2

�

Chapter One

Fundamentals of Computer Design

Computer technology has made incredible progress in the roughly 55 years since
the first general-purpose electronic computer was created. Today, less than a
thousand dollars will purchase a personal computer that has more performance,
more main memory, and more disk storage than a computer bought in 1980 for 1
million dollars. This rapid rate of improvement has come both from advances in
the technology used to build computers and from innovation in computer design.

Although technological improvements have been fairly steady, progress aris-
ing from better computer architectures has been much less consistent. During the
first 25 years of electronic computers, both forces made a major contribution; but
beginning in about 1970, computer designers became largely dependent upon
integrated circuit technology. During the 1970s, performance continued to
improve at about 25% to 30% per year for the mainframes and minicomputers
that dominated the industry.

The late 1970s saw the emergence of the microprocessor. The ability of the
microprocessor to ride the improvements in integrated circuit technology more
closely than the less integrated mainframes and minicomputers led to a higher
rate of improvement—roughly 35% growth per year in performance.

This growth rate, combined with the cost advantages of a mass-produced
microprocessor, led to an increasing fraction of the computer business being
based on microprocessors. In addition, two significant changes in the computer
marketplace made it easier than ever before to be commercially successful with a
new architecture. First, the virtual elimination of assembly language program-
ming reduced the need for object-code compatibility. Second, the creation of
standardized, vendor-independent operating systems, such as UNIX and its clone,
Linux, lowered the cost and risk of bringing out a new architecture.

These changes made it possible to successfully develop a new set of architec-
tures, called RISC (Reduced Instruction Set Computer) architectures, in the early
1980s. The RISC-based machines focused the attention of designers on two criti-
cal performance techniques, the exploitation of instruction-level parallelism (ini-
tially through pipelining and later through multiple instruction issue) and the use
of caches (initially in simple forms and later using more sophisticated organiza-
tions and optimizations). The combination of architectural and organizational
enhancements has led to 20 years of sustained growth in performance at an
annual rate of over 50%. Figure 1.1 shows the effect of this difference in perfor-
mance growth rates.

The effect of this dramatic growth rate has been twofold. First, it has signifi-
cantly enhanced the capability available to computer users. For many applica-
tions, the highest-performance microprocessors of today outperform the super-
computer of less than 10 years ago.

Second, this dramatic rate of improvement has led to the dominance of
microprocessor-based computers across the entire range of the computer design.
Workstations and PCs have emerged as major products in the computer industry.
Minicomputers, which were traditionally made from off-the-shelf logic or from

1.1 Introduction

1.1 Introduction

�

3

gate arrays, have been replaced by servers made using microprocessors. Main-
frames have been almost completely replaced with multiprocessors consisting of
small numbers of off-the-shelf microprocessors. Even high-end supercomputers
are being built with collections of microprocessors.
 Freedom from compatibility with old designs and the use of microprocessor
technology led to a renaissance in computer design, which emphasized both
architectural innovation and efficient use of technology improvements. This
renaissance is responsible for the higher performance growth shown in Figure
1.1—a rate that is unprecedented in the computer industry. This rate of growth
has compounded so that by 2001, the difference between the highest-
performance microprocessors and what would have been obtained by relying
solely on technology, including improved circuit design, was about a factor of 15.

Figure 1.1

Growth in microprocessor performance since the mid-1980s has been substantially higher than in
earlier years as shown by plotting SPECint performance.

This chart plots relative performance as measured by the
SPECint benchmarks with base of one being a VAX 11/780. Since SPEC has changed over the years, performance of
newer machines is estimated by a scaling factor that relates the performance for two different versions of SPEC (e.g.,
SPEC92 and SPEC95). Prior to the mid-1980s, microprocessor performance growth was largely technology driven
and averaged about 35% per year. The increase in growth since then is attributable to more advanced architectural
and organizational ideas. By 2001 this growth led to a difference in performance of about a factor of 15. Performance
for floating-point-oriented calculations has increased even faster.

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

Year

1.58x per year

1.35x per year
MIPS
R2000

IBM
Power1

HP
9000

DEC
Alpha

DEC
Alpha

HP
9000

Intel
Pentium III

Relative
performance

4

�

Chapter One

Fundamentals of Computer Design

In the last few years, the tremendous improvement in integrated circuit capa-
bility has allowed older, less-streamlined architectures, such as the x86 (or IA-32)
architecture, to adopt many of the innovations first pioneered in the RISC
designs. As we will see, modern x86 processors basically consist of a front end
that fetches and decodes x86 instructions and maps them into simple ALU, mem-
ory access, or branch operations that can be executed on a RISC-style pipelined
processor. Beginning in the late 1990s, as transistor counts soared, the overhead
(in transistors) of interpreting the more complex x86 architecture became negligi-
ble as a percentage of the total transistor count of a modern microprocessor.

This text is about the architectural ideas and accompanying compiler im-
provements that have made this incredible growth rate possible. At the center of
this dramatic revolution has been the development of a quantitative approach to
computer design and analysis that uses empirical observations of programs, ex-
perimentation, and simulation as its tools. It is this style and approach to com-
puter design that is reflected in this text.

Sustaining the recent improvements in cost and performance will require con-
tinuing innovations in computer design, and we believe such innovations will be
founded on this quantitative approach to computer design. Hence, this book has
been written not only to document this design style, but also to stimulate you to
contribute to this progress.

In the 1960s, the dominant form of computing was on large mainframes—
machines costing millions of dollars and stored in computer rooms with multiple
operators overseeing their support. Typical applications included business data
processing and large-scale scientific computing. The 1970s saw the birth of the
minicomputer, a smaller-sized machine initially focused on applications in scien-
tific laboratories, but rapidly branching out as the technology of time-sharing—
multiple users sharing a computer interactively through independent terminals—
became widespread. The 1980s saw the rise of the desktop computer based on
microprocessors, in the form of both personal computers and workstations. The
individually owned desktop computer replaced time-sharing and led to the rise of
servers—computers that provided larger-scale services such as reliable, long-
term file storage and access, larger memory, and more computing power. The
1990s saw the emergence of the Internet and the World Wide Web, the first suc-
cessful handheld computing devices (personal digital assistants or PDAs), and the
emergence of high-performance digital consumer electronics, from video games
to set-top boxes.

These changes have set the stage for a dramatic change in how we view com-
puting, computing applications, and the computer markets at the beginning of the
millennium. Not since the creation of the personal computer more than 20 years
ago have we seen such dramatic changes in the way computers appear and in how

1.2 The Changing Face of Computing and the Task
of the Computer Designer

1.2 The Changing Face of Computing and the Task of the Computer Designer

�

5

they are used. These changes in computer use have led to three different comput-
ing markets, each characterized by different applications, requirements, and com-
puting technologies.

Desktop Computing

The first, and still the largest market in dollar terms, is desktop computing. Desk-
top computing spans from low-end systems that sell for under $1000 to high-end,
heavily configured workstations that may sell for over $10,000. Throughout this
range in price and capability, the desktop market tends to be driven to optimize

price-performance.

 This combination of performance (measured primarily in
terms of compute performance and graphics performance) and price of a system
is what matters most to customers in this market, and hence to computer design-
ers. As a result, desktop systems often are where the newest, highest-performance
microprocessors appear, as well as where recently cost-reduced microprocessors
and systems appear first (see Section 1.4 for a discussion of the issues affecting
the cost of computers).

Desktop computing also tends to be reasonably well characterized in terms of
applications and benchmarking, though the increasing use of Web-centric, inter-
active applications poses new challenges in performance evaluation. As we dis-
cuss in Section 1.9, the PC portion of the desktop space seems recently to have
become focused on clock rate as the direct measure of performance, and this
focus can lead to poor decisions by consumers as well as by designers who
respond to this predilection.

Servers

As the shift to desktop computing occurred, the role of servers to provide larger-
scale and more reliable file and computing services grew. The emergence of the
World Wide Web accelerated this trend because of the tremendous growth in
demand for Web servers and the growth in sophistication of Web-based services.
Such servers have become the backbone of large-scale enterprise computing,
replacing the traditional mainframe.

For servers, different characteristics are important. First, availability is criti-
cal. We use the term “availability,” which means that the system can reliably and
effectively provide a service. This term is to be distinguished from “reliability,”
which says that the system never fails. Parts of large-scale systems unavoidably
fail; the challenge in a server is to maintain system availability in the face of com-
ponent failures, usually through the use of redundancy. This topic is discussed in
detail in Chapter 7.

Why is availability crucial? Consider the servers running Yahoo!, taking
orders for Cisco, or running auctions on eBay. Obviously such systems must be
operating seven days a week, 24 hours a day. Failure of such a server system is far
more catastrophic than failure of a single desktop. Although it is hard to estimate
the cost of downtime, Figure 1.2 shows one analysis, assuming that downtime is

6

�

Chapter One

Fundamentals of Computer Design

distributed uniformly and does not occur solely during idle times. As we can see,
the estimated costs of an unavailable system are high, and the estimated costs in
Figure 1.2 are purely lost revenue and do not account for the cost of unhappy cus-
tomers!

A second key feature of server systems is an emphasis on scalability. Server
systems often grow over their lifetime in response to a growing demand for the
services they support or an increase in functional requirements. Thus, the ability
to scale up the computing capacity, the memory, the storage, and the I/O band-
width of a server is crucial.

Lastly, servers are designed for efficient throughput. That is, the overall per-
formance of the server—in terms of transactions per minute or Web pages served
per second—is what is crucial. Responsiveness to an individual request remains
important, but overall efficiency and cost-effectiveness, as determined by how
many requests can be handled in a unit time, are the key metrics for most servers.
(We return to the issue of performance and assessing performance for different
types of computing environments in Section 1.5).

Embedded Computers

Embedded computers—computers lodged in other devices where the presence of
the computers is not immediately obvious—are the fastest growing portion of the
computer market. These devices range from everyday machines (most micro-
waves, most washing machines, most printers, most networking switches, and all
cars contain simple embedded microprocessors) to handheld digital devices (such
as palmtops, cell phones, and smart cards) to video games and digital set-top

Application
Cost of downtime per
hour (thousands of $)

Annual losses (millions of $) with downtime of

1%
(87.6 hrs/yr)

0.5%
(43.8 hrs/yr)

0.1%
(8.8 hrs/yr)

Brokerage operations $6450 $565 $283 $56.5

Credit card authorization $2600 $228 $114 $22.8

Package shipping services $150 $13 $6.6 $1.3

Home shopping channel $113 $9.9 $4.9 $1.0

Catalog sales center $90 $7.9 $3.9 $0.8

Airline reservation center $89 $7.9 $3.9 $0.8

Cellular service activation $41 $3.6 $1.8 $0.4

Online network fees $25 $2.2 $1.1 $0.2

ATM service fees $14 $1.2 $0.6 $0.1

Figure 1.2

The cost of an unavailable system is shown by analyzing the cost of downtime (in terms of immedi-
ately lost revenue), assuming three different levels of availability and that downtime is distributed uniformly.

These data are from Kembel [2000] and were collected and analyzed by Contingency Planning Research.

1.2 The Changing Face of Computing and the Task of the Computer Designer

�

7

boxes. Although in some applications (such as palmtops) the computers are pro-
grammable, in many embedded applications the only programming occurs in
connection with the initial loading of the application code or a later software
upgrade of that application. Thus, the application can usually be carefully tuned
for the processor and system. This process sometimes includes limited use of
assembly language in key loops, although time-to-market pressures and good
software engineering practice usually restrict such assembly language coding to a
small fraction of the application. This use of assembly language, together with
the presence of standardized operating systems, and a large code base has meant
that instruction set compatibility has become an important concern in the embed-
ded market. Simply put, like other computing applications, software costs are
often a large part of the total cost of an embedded system.

Embedded computers have the widest range of processing power and cost—
from low-end 8-bit and 16-bit processors that may cost less than a dollar, to full
32-bit microprocessors capable of executing 50 million instructions per second
that cost under 10 dollars, to high-end embedded processors that cost hundreds of
dollars and can execute a billion instructions per second for the newest video
game or for a high-end network switch. Although the range of computing power
in the embedded computing market is very large, price is a key factor in the
design of computers for this space. Performance requirements do exist, of course,
but the primary goal is often meeting the performance need at a minimum price,
rather than achieving higher performance at a higher price.

Often, the performance requirement in an embedded application is a real-time
requirement. A

real-time performance requirement

 is one where a segment of the
application has an absolute maximum execution time that is allowed. For exam-
ple, in a digital set-top box the time to process each video frame is limited, since
the processor must accept and process the next frame shortly. In some applica-
tions, a more sophisticated requirement exists: the average time for a particular
task is constrained as well as the number of instances when some maximum time
is exceeded. Such approaches (sometimes called

soft real-time

) arise when it is
possible to occasionally miss the time constraint on an event, as long as not too
many are missed. Real-time performance tends to be highly application depen-
dent. It is usually measured using kernels either from the application or from a
standardized benchmark (see the EEMBC benchmarks described in Section 1.5).
With the growth in the use of embedded microprocessors, a wide range of bench-
mark requirements exist, from the ability to run small, limited code segments to
the ability to perform well on applications involving tens to hundreds of thou-
sands of lines of code.

Two other key characteristics exist in many embedded applications: the need
to minimize memory and the need to minimize power. In many embedded appli-
cations, the memory can be a substantial portion of the system cost, and it is
important to optimize memory size in such cases. Sometimes the application is
expected to fit totally in the memory on the processor chip; other times the appli-
cation needs to fit totally in a small off-chip memory. In any event, the impor-
tance of memory size translates to an emphasis on code size, since data size is

8

�

Chapter One

Fundamentals of Computer Design

dictated by the application. As we will see in the next chapter, some architectures
have special instruction set capabilities to reduce code size. Larger memories also
mean more power, and optimizing power is often critical in embedded applica-
tions. Although the emphasis on low power is frequently driven by the use of bat-
teries, the need to use less expensive packaging (plastic versus ceramic) and the
absence of a fan for cooling also limit total power consumption.We examine the
issue of power in more detail later in the chapter.

Another important trend in embedded systems is the use of processor cores
together with application-specific circuitry. Often an application’s functional and
performance requirements are met by combining a custom hardware solution
together with software running on a standardized embedded processor core,
which is designed to interface to such special-purpose hardware. In practice,
embedded problems are usually solved by one of three approaches:

1.

The designer uses a combined hardware/software solution that includes some
custom hardware and an embedded processor core that is integrated with the
custom hardware, often on the same chip.

2.

The designer uses custom software running on an off-the-shelf embedded
processor.

3.

The designer uses a digital signal processor and custom software for the pro-
cessor.

Digital signal processors

 (DSPs) are processors specially tailored for
signal-processing applications. We discuss some of the important differences
between digital signal processors and general-purpose embedded processors
in the next chapter.

Most of what we discuss in this book applies to the design, use, and perfor-
mance of embedded processors, whether they are off-the-shelf microprocessors
or microprocessor cores, which will be assembled with other special-purpose
hardware. The design of special-purpose, application-specific hardware and
architecture and the use of DSPs, however, are outside of the scope of this book.
Figure 1.3 summarizes these three classes of computing environments and their
important characteristics.

The Task of the Computer Designer

The task the computer designer faces is a complex one: Determine what attributes
are important for a new machine, then design a machine to maximize perfor-
mance while staying within cost and power constraints. This task has many
aspects, including instruction set design, functional organization, logic design,
and implementation. The implementation may encompass integrated circuit
design, packaging, power, and cooling. Optimizing the design requires familiarity
with a very wide range of technologies, from compilers and operating systems to
logic design and packaging.

In the past, the term

computer architecture

 often referred only to instruction
set design. Other aspects of computer design were called

 implementation,

 often

1.2 The Changing Face of Computing and the Task of the Computer Designer

�

9

insinuating that implementation is uninteresting or less challenging. We believe
this view is not only incorrect, but is even responsible for mistakes in the design
of new instruction sets. The architect’s or designer’s job is much more than
instruction set design, and the technical hurdles in the other aspects of the project
are certainly as challenging as those encountered in instruction set design. This
challenge is particularly acute at the present, when the differences among instruc-
tion sets are small and when there are three rather distinct application areas.

In this book the term

instruction set architecture

refers to the actual
programmer-visible instruction set. The instruction set architecture serves as the
boundary between the software and hardware, and that topic is the focus of
Chapter 2. The implementation of a machine has two components: organization
and hardware.

The term

organization

 includes the high-level aspects of a computer’s design,
such as the memory system, the bus structure, and the design of the internal CPU
(central processing unit—where arithmetic, logic, branching, and data transfer
are implemented). For example, two embedded processors with identical instruc-
tion set architectures but very different organizations are the NEC VR 5432 and
the NEC VR 4122. Both processors implement the MIPS64 instruction set, but
they have very different pipeline and cache organizations. In addition, the 4122
implements the floating-point instructions in software rather than hardware!

Hardware

 is used to refer to the specifics of a machine, including the detailed
logic design and the packaging technology of the machine. Often a line of
machines contains machines with identical instruction set architectures and
nearly identical organizations, but they differ in the detailed hardware implemen-
tation. For example, the Pentium II and Celeron are nearly identical, but offer

Feature Desktop Server Embedded

Price of system $1000–$10,000 $10,000–$10,000,000 $10–$100,000 (including network
routers at the high end)

Price of microprocessor
module

$100–$1000 $200–$2000
(per processor)

$0.20–$200 (per processor)

Microprocessors sold per year
(estimates for 2000)

150,000,000 4,000,000 300,000,000
(32-bit and 64-bit processors only)

Critical system design issues Price-performance,
graphics performance

Throughput, availability,
scalability

Price, power consumption,
application-specific performance

Figure 1.3

A summary of the three computing classes and their system characteristics.

Note the wide range in
system price for servers and embedded systems. For servers, this range arises from the need for very large-scale mul-
tiprocessor systems for high-end transaction processing and Web server applications. For embedded systems, one
significant high-end application is a network router, which could include multiple processors as well as lots of mem-
ory and other electronics. The total number of embedded processors sold in 2000 is estimated to exceed 1 billion, if
you include 8-bit and 16-bit microprocessors. In fact, the largest selling microprocessor of all time is an 8-bit micro-
controller sold by Intel! It is difficult to separate the low end of the server market from the desktop market, since low-
end servers—especially those costing less than $5000—are essentially no different from desktop PCs. Hence, up to a
few million of the PC units may be effectively servers.

10

�

Chapter One

Fundamentals of Computer Design

different clock rates and different memory systems, making the Celeron more
effective for low-end computers. In this book the word

 architecture

 is intended to
cover all three aspects of computer design—instruction set architecture, organiza-
tion, and hardware.

Computer architects must design a computer to meet functional requirements
as well as price, power, and performance goals. Often, they also have to deter-
mine what the functional requirements are, which can be a major task. The
requirements may be specific features inspired by the market. Application soft-
ware often drives the choice of certain functional requirements by determining
how the machine will be used. If a large body of software exists for a certain
instruction set architecture, the architect may decide that a new machine should
implement an existing instruction set. The presence of a large market for a partic-
ular class of applications might encourage the designers to incorporate require-
ments that would make the machine competitive in that market. Figure 1.4

Functional requirements Typical features required or supported

Application area Target of computer

General-purpose desktop Balanced performance for a range of tasks, including interactive performance for
graphics, video, and audio (Ch. 2, 3, 4, 5)

Scientific desktops and servers High-performance floating point and graphics (App. G, H)

Commercial servers Support for databases and transaction processing; enhancements for reliability and
availability; support for scalability (Ch. 2, 6, 8)

Embedded computing Often requires special support for graphics or video (or other application-specific
extension); power limitations and power control may be required (Ch. 2, 3, 4, 5)

Level of software compatibility Determines amount of existing software for machine

At programming language Most flexible for designer; need new compiler (Ch. 2, 6)

Object code or binary
compatible

Instruction set architecture is completely defined—little flexibility—but no
investment needed in software or porting programs

Operating system requirements Necessary features to support chosen OS (Ch. 5, 8)

Size of address space Very important feature (Ch. 5); may limit applications

Memory management Required for modern OS; may be paged or segmented (Ch. 5)

Protection Different OS and application needs: page vs. segment protection (Ch. 5)

Standards Certain standards may be required by marketplace

Floating point Format and arithmetic: IEEE 754 standard (App. H), special arithmetic for
graphics or signal processing

I/O bus For I/O devices: Ultra ATA, Ultra SCSI, PCI (Ch. 7, 8)

Operating systems UNIX, PalmOS, Windows, Windows NT, Windows CE, CISCO IOS

Networks Support required for different networks: Ethernet, Infiniband (Ch. 8)

Programming languages Languages (ANSI C, C++, Java, FORTRAN) affect instruction set (Ch. 2)

Figure 1.4

Summary of some of the most important functional requirements an architect faces.

The left-hand
column describes the class of requirement, while the right-hand column gives examples of specific features that
might be needed. The right-hand column also contains references to chapters and appendices that deal with the
specific issues.

1.3 Technology Trends

�

11

summarizes some requirements that need to be considered in designing a new
machine. Many of these requirements and features will be examined in depth in
later chapters.

Once a set of functional requirements has been established, the architect must
try to optimize the design. Which design choices are optimal depends, of course,
on the choice of metrics. The changes in the computer applications space over the
last decade have dramatically changed the metrics. Although desktop computers
remain focused on optimizing cost-performance as measured by a single user,
servers focus on availability, scalability, and throughput cost-performance, and
embedded computers are driven by price and often power issues.

These differences and the diversity and size of these different markets lead to
fundamentally different design efforts. For the desktop market, much of the effort
goes into designing a leading-edge microprocessor and into the graphics and I/O
system that integrate with the microprocessor. In the server area, the focus is on
integrating state-of-the-art microprocessors, often in a multiprocessor architec-
ture, and designing scalable and highly available I/O systems to accompany the
processors. Finally, in the leading edge of the embedded processor market, the
challenge lies in adopting the high-end microprocessor techniques to deliver most
of the performance at a lower fraction of the price, while paying attention to
demanding limits on power and sometimes a need for high-performance graphics
or video processing.

In addition to performance and cost, designers must be aware of important
trends in both the implementation technology and the use of computers. Such
trends not only impact future cost, but also determine the longevity of an archi-
tecture. The next two sections discuss technology and cost trends.

If an instruction set architecture is to be successful, it must be designed to survive
rapid changes in computer technology. After all, a successful new instruction set
architecture may last decades—the core of the IBM mainframe has been in use
for more than 35 years. An architect must plan for technology changes that can
increase the lifetime of a successful computer.

To plan for the evolution of a machine, the designer must be especially
aware of rapidly occurring changes in implementation technology. Four imple-
mentation technologies, which change at a dramatic pace, are critical to modern
implementations:

�

Integrated circuit logic technology

—Transistor density increases by about
35% per year, quadrupling in somewhat over four years. Increases in die size
are less predictable and slower, ranging from 10% to 20% per year. The com-
bined effect is a growth rate in transistor count on a chip of about 55% per
year. Device speed scales more slowly, as we discuss below.

1.3 Technology Trends

12

�

Chapter One

Fundamentals of Computer Design

�

Semiconductor DRAM

(dynamic random-access memory)—Density
increases by between 40% and 60% per year, quadrupling in three to four
years. Cycle time has improved very slowly, decreasing by about one-third in
10 years. Bandwidth per chip increases about twice as fast as latency
decreases. In addition, changes to the DRAM interface have also improved
the bandwidth; these are discussed in Chapter 5.

�

Magnetic disk technology

—Recently, disk density has been improving by
more than 100% per year, quadrupling in two years. Prior to 1990, density
increased by about 30% per year, doubling in three years. It appears that disk
technology will continue the faster density growth rate for some time to
come. Access time has improved by one-third in 10 years. This technology is
central to Chapter 7, and we discuss the trends in greater detail there.

�

Network technology

—Network performance depends both on the perfor-
mance of switches and on the performance of the transmission system. Both
latency and bandwidth can be improved, though recently bandwidth has been
the primary focus. For many years, networking technology appeared to
improve slowly: for example, it took about 10 years for Ethernet technology
to move from 10 Mb to 100 Mb. The increased importance of networking has
led to a faster rate of progress, with 1 Gb Ethernet becoming available about
five years after 100 Mb. The Internet infrastructure in the United States has
seen even faster growth (roughly doubling in bandwidth every year), both
through the use of optical media and through the deployment of much more
switching hardware.

These rapidly changing technologies impact the design of a microprocessor
that may, with speed and technology enhancements, have a lifetime of five or
more years. Even within the span of a single product cycle for a computing sys-
tem (two years of design and two to three years of production), key technologies,
such as DRAM, change sufficiently that the designer must plan for these changes.
Indeed, designers often design for the next technology, knowing that when a
product begins shipping in volume that next technology may be the most cost-
effective or may have performance advantages. Traditionally, cost has decreased
at about the rate at which density increases.

Although technology improves fairly continuously, the impact of these
improvements is sometimes seen in discrete leaps, as a threshold that allows a
new capability is reached. For example, when MOS technology reached the point
where it could put between 25,000 and 50,000 transistors on a single chip in the
early 1980s, it became possible to build a 32-bit microprocessor on a single chip.
By the late 1980s, first-level caches could go on chip. By eliminating chip cross-
ings within the processor and between the processor and the cache, a dramatic
increase in cost-performance and performance/power was possible. This design
was simply infeasible until the technology reached a certain point. Such technol-
ogy thresholds are not rare and have a significant impact on a wide variety of
design decisions.

1.3 Technology Trends

�

13

Scaling of Transistor Performance, Wires, and Power in
Integrated Circuits

Integrated circuit processes are characterized by the

feature size,

 which is the
minimum size of a transistor or a wire in either the

x

 or

y

 dimension. Feature sizes
have decreased from 10 microns in 1971 to 0.18 microns in 2001. Since the tran-
sistor count per square millimeter of silicon is determined by the surface area of a
transistor, the density of transistors increases quadratically with a linear decrease
in feature size. The increase in transistor performance, however, is more complex.
As feature sizes shrink, devices shrink quadratically in the horizontal dimension
and also shrink in the vertical dimension. The shrink in the vertical dimension
requires a reduction in operating voltage to maintain correct operation and reli-
ability of the transistors. This combination of scaling factors leads to a complex
interrelationship between transistor performance and process feature size. To a
first approximation, transistor performance improves linearly with decreasing
feature size.

The fact that transistor count improves quadratically with a linear improve-
ment in transistor performance is both the challenge and the opportunity that
computer architects were created for! In the early days of microprocessors, the
higher rate of improvement in density was used to quickly move from 4-bit, to 8-
bit, to 16-bit, to 32-bit microprocessors. More recently, density improvements
have supported the introduction of 64-bit microprocessors as well as many of the
innovations in pipelining and caches, which we discuss in Chapters 3, 4, and 5.

Although transistors generally improve in performance with decreased fea-
ture size, wires in an integrated circuit do not. In particular, the signal delay for a
wire increases in proportion to the product of its resistance and capacitance. Of
course, as feature size shrinks, wires get shorter, but the resistance and capaci-
tance per unit length get worse. This relationship is complex, since both resis-
tance and capacitance depend on detailed aspects of the process, the geometry of
a wire, the loading on a wire, and even the adjacency to other structures. There
are occasional process enhancements, such as the introduction of copper, which
provide one-time improvements in wire delay. In general, however, wire delay
scales poorly compared to transistor performance, creating additional challenges
for the designer. In the past few years, wire delay has become a major design lim-
itation for large integrated circuits and is often more critical than transistor
switching delay. Larger and larger fractions of the clock cycle have been con-
sumed by the propagation delay of signals on wires. In 2001, the Pentium 4 broke
new ground by allocating 2 stages of its 20+-stage pipeline just for propagating
signals across the chip.

Power also provides challenges as devices are scaled. For modern CMOS
microprocessors, the dominant energy consumption is in switching transistors.
The energy required per transistor is proportional to the product of the load
capacitance of the transistor, the frequency of switching, and the square of the
voltage. As we move from one process to the next, the increase in the number of
transistors switching, and the frequency with which they switch, dominates the

14

�

Chapter One

Fundamentals of Computer Design

decrease in load capacitance and voltage, leading to an overall growth in power
consumption. The first microprocessors consumed tenths of a watt, while a 2
GHz Pentium 4 consumes close to 100 watts. The fastest workstation and server
microprocessors in 2001 consumed between 100 and 150 watts. Distributing the
power, removing the heat, and preventing hot spots have become increasingly dif-
ficult challenges, and it is likely that power rather than raw transistor count will
become the major limitation in the near future.

Although there are computer designs where costs tend to be less important—
specifically supercomputers—cost-sensitive designs are of growing significance:
More than half the PCs sold in 1999 were priced at less than $1000, and the aver-
age price of a 32-bit microprocessor for an embedded application is in the tens of
dollars. Indeed, in the past 15 years, the use of technology improvements to
achieve lower cost, as well as increased performance, has been a major theme in
the computer industry.

Textbooks often ignore the cost half of cost-performance because costs
change, thereby dating books, and because the issues are subtle and differ across
industry segments. Yet an understanding of cost and its factors is essential for
designers to be able to make intelligent decisions about whether or not a new
feature should be included in designs where cost is an issue. (Imagine architects
designing skyscrapers without any information on costs of steel beams and
concrete!)

This section focuses on cost and price, specifically on the relationship
between price and cost: price is what you sell a finished good for, and cost is the
amount spent to produce it, including overhead. We also discuss the major trends
and factors that affect cost and how it changes over time. The exercises and
examples use specific cost data that will change over time, though the basic deter-
minants of cost are less time sensitive. This section will introduce you to these
topics by discussing some of the major factors that influence the cost of a com-
puter design and how these factors are changing over time.

The Impact of Time, Volume, and Commodification

The cost of a manufactured computer component decreases over time even with-
out major improvements in the basic implementation technology. The underlying
principle that drives costs down is the

learning curve

—manufacturing costs
decrease over time. The learning curve itself is best measured by change in

yield

—the percentage of manufactured devices that survives the testing proce-
dure. Whether it is a chip, a board, or a system, designs that have twice the yield
will have basically half the cost.

Understanding how the learning curve will improve yield is key to projecting
costs over the life of the product. As an example of the learning curve in action,
the price per megabyte of DRAM drops over the long term by 40% per year.

1.4 Cost, Price, and Their Trends

1.4 Cost, Price, and Their Trends

�

15

Since DRAMs tend to be priced in close relationship to cost—with the exception
of periods when there is a shortage—price and cost of DRAM track closely. In
fact, there are some periods (for example, early 2001) in which it appears that
price is less than cost; of course, the manufacturers hope that such periods are
both infrequent and short!

Figure 1.5 plots the price of a new DRAM chip over its lifetime. Between the
start of a project and the shipping of a product, say, two years, the cost of a new
DRAM drops by a factor of between 5 and 10 in constant dollars. Since not all
component costs change at the same rate, designs based on projected costs result
in different cost-performance trade-offs than those using current costs. The cap-
tion of Figure 1.5 discusses some of the long-term trends in DRAM price.

Microprocessor prices also drop over time, but because they are less standard-
ized than DRAMs, the relationship between price and cost is more complex. In a

Figure 1.5

Prices of six generations of DRAMs (from 16K bits to 64M bits) over time in 1977 dollars, showing the
learning curve at work.

A 1977 dollar is worth about $2.95 in 2001; more than half of this inflation occurred in the
five-year period of 1977–82, during which the value changed to $1.59. The cost of a megabyte of memory has
dropped

incredibly

 during this period, from over $5000 in 1977 to about $0.35 in 2000, and an amazing $0.08 in 2001
(in 1977 dollars)! Each generation drops in constant dollar price by a factor of 10 to 30 over its lifetime. Starting in
about 1996, an explosion of manufacturers has dramatically reduced margins and increased the rate at which prices
fall, as well as the eventual final price for a DRAM. Periods when demand exceeded supply, such as 1987–88 and
1992–93, have led to temporary higher pricing, which shows up as a slowing in the rate of price decrease; more dra-
matic short-term fluctuations have been smoothed out. In late 2000 and through 2001, there has been tremendous
oversupply, leading to an accelerated price decrease, which is probably not sustainable.

0

10

20

30

40

50

60

70

80

19
78

19
79

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

16K bits

64K bits

256K bits
1M bits

4M bits

16M bits

64M bits

Year

 Dollars per
 DRAM chip

16

�

Chapter One

Fundamentals of Computer Design

period of significant competition, price tends to track cost closely, although
microprocessor vendors probably rarely sell at a loss. Figure 1.6 shows processor
price trends for the Pentium III.

Volume is a second key factor in determining cost. Increasing volumes affect
cost in several ways. First, they decrease the time needed to get down the learning
curve, which is partly proportional to the number of systems (or chips) manufac-
tured. Second, volume decreases cost, since it increases purchasing and manu-
facturing efficiency. As a rule of thumb, some designers have estimated that cost
decreases about 10% for each doubling of volume. Also, volume decreases the
amount of development cost that must be amortized by each machine, thus
allowing cost and selling price to be closer. We will return to the other factors
influencing selling price shortly.

Commodities

 are products that are sold by multiple vendors in large volumes
and are essentially identical. Virtually all the products sold on the shelves of gro-
cery stores are commodities, as are standard DRAMs, disks, monitors, and key-
boards. In the past 10 years, much of the low end of the computer business has
become a commodity business focused on building IBM-compatible PCs. There
are a number of vendors that ship virtually identical products and are highly com-

Figure 1.6

The price of an Intel Pentium III at a given frequency decreases over time as yield enhancements
decrease the cost of a good die and competition forces price reductions.

 Data courtesy of

Microprocessor Report,

May 2000 issue. The most recent introductions will continue to decrease until they reach similar prices to the lowest-
cost parts available today ($100–$200). Such price decreases assume a competitive environment where price
decreases track cost decreases closely.

M
ay

 1
99

9

Ju
ne

 1
99

9

Ju
ly

19
99

Aug
. 1

99
9

Sep
t.
19

99

O
ct
. 1

99
9

Nov
. 1

99
9

Dec
. 1

99
9

Ja
n.
 2
00

0

Fe
b.
 2
00

0

M
ar

. 2
00

0

Apr
. 2

00
0

M
ay

 2
00

0

Ju
ne

 2
00

0

Ju
ly

20
00

Aug
. 2

00
0

$300

$400

$500

$600

$700

$800

$900

$1000

$200

$100

$0

Intel list price
(1000 units)

Date

450 MHz
500 MHz

600 MHz

733 MHz

867 MHz

1000 MHz

1.4 Cost, Price, and Their Trends

�

17

petitive. Of course, this competition decreases the gap between cost and selling
price, but it also decreases cost. Reductions occur because a commodity market
has both volume and a clear product definition, which allows multiple suppliers
to compete in building components for the commodity product. As a result, the
overall product cost is lower because of the competition among the suppliers of
the components and the volume efficiencies the suppliers can achieve. This has
led to the low end of the computer business being able to achieve better price-
performance than other sectors and yielded greater growth at the low end,
although with very limited profits (as is typical in any commodity business).

Cost of an Integrated Circuit

Why would a computer architecture book have a section on integrated circuit
costs? In an increasingly competitive computer marketplace where standard
parts—disks, DRAMs, and so on—are becoming a significant portion of any sys-
tem’s cost, integrated circuit costs are becoming a greater portion of the cost that
varies between machines, especially in the high-volume, cost-sensitive portion of
the market. Thus computer designers must understand the costs of chips to under-
stand the costs of current computers.

Although the costs of integrated circuits have dropped exponentially, the
basic procedure of silicon manufacture is unchanged: A

wafer

is still tested and
chopped into

dies

 that are packaged (see Figures 1.7 and 1.8). Thus the cost of a
packaged integrated circuit is

Figure 1.7

Photograph of an Intel Pentium 4 microprocessor die.

(Courtesy Intel.)

18

�

Chapter One

Fundamentals of Computer Design

Cost of integrated circuit =

In this section, we focus on the cost of dies, summarizing the key issues in testing
and packaging at the end. A longer discussion of the testing costs and packaging
costs appears in the exercises.

Learning how to predict the number of good chips per wafer requires first
learning how many dies fit on a wafer and then learning how to predict the per-
centage of those that will work. From there it is simple to predict cost:

The most interesting feature of this first term of the chip cost equation is its sensi-
tivity to die size, shown below.

Figure 1.8

This 8-inch wafer contains 564 MIPS64 R20K processors implemented in
a 0.18µ process.

The R20K is an implementation of the MIPS64 architecture with
instruction set extensions, called MIPS-3D, for use in three-dimensional graphics com-
putations. The R20K is available at speeds from 500 to 750 MHz and is capable of exe-
cuting two integer operations every clock cycle. Using the MIPS-3D instructions, the
R20K can perform up to 3 billion floating-point operations per second. (Courtesy MIPS
Technologies, Inc.)

Cost of die + Cost of testing die + Cost of packaging and final test

Final test yield

Cost of die Cost of wafer
Dies per wafer Die yield×
---=

1.4 Cost, Price, and Their Trends

� 19

The number of dies per wafer is basically the area of the wafer divided by the
area of the die. It can be more accurately estimated by

The first term is the ratio of wafer area (πr2) to die area. The second compensates
for the “square peg in a round hole” problem—rectangular dies near the periph-
ery of round wafers. Dividing the circumference (πd) by the diagonal of a square
die is approximately the number of dies along the edge. For example, a wafer 30
cm (≈ 12 inches) in diameter produces π × 225 – (π × 30 ⁄ 1.41) = 640 1-cm dies.

Example Find the number of dies per 30 cm wafer for a die that is 0.7 cm on a side.

Answer The total die area is 0.49 cm2. Thus

But this only gives the maximum number of dies per wafer. The critical ques-
tion is, What is the fraction or percentage of good dies on a wafer number, or the
die yield? A simple empirical model of integrated circuit yield, which assumes
that defects are randomly distributed over the wafer and that yield is inversely
proportional to the complexity of the fabrication process, leads to the following:

where wafer yield accounts for wafers that are completely bad and so need not be
tested. For simplicity, we’ll just assume the wafer yield is 100%. Defects per unit
area is a measure of the random manufacturing defects that occur. In 2001, these
values typically range between 0.4 and 0.8 per square centimeter, depending on
the maturity of the process (recall the learning curve, mentioned earlier). Lastly,
α is a parameter that corresponds inversely to the number of masking levels, a
measure of manufacturing complexity, critical to die yield. For today’s multilevel
metal CMOS processes, a good estimate is α = 4.0.

Example Find the die yield for dies that are 1 cm on a side and 0.7 cm on a side, assuming
a defect density of 0.6 per cm2.

Answer The total die areas are 1 cm2 and 0.49 cm2. For the larger die the yield is

Dies per wafer π Wafer diameter/2()2×
Die area

---= – π Wafer diameter ×
2 Die area

×

Dies per wafer π 30 2⁄()2×
0.49

------------------------------= – π

30 ×

2 0.49

×
 ------------------------ 706.5

0.49
------------- –

94.2
0.99
---------- 1347= =

Die yield Wafer yield 1 Defects per unit area Die area×
α

--+
 –α

×=

Die yield 1 0.6 1×
4.0

----------------+
 4–

0.57= =

20

�

Chapter One

Fundamentals of Computer Design

For the smaller die, it is

The bottom line is the number of good dies per wafer, which comes from
multiplying dies per wafer by die yield (which incorporates the effects of
defects). The examples above predict 366 good 1 cm

2

 dies from the 30 cm wafer
and 1014 good 0.49 cm

2

 dies. Most 32-bit and 64-bit microprocessors in a mod-
ern 0.25µ technology fall between these two sizes, with some processors being as
large as 2 cm

2

 in the prototype process before a shrink. Low-end embedded 32-
bit processors are sometimes as small as 0.25 cm

2

, while processors used for
embedded control (in printers, automobiles, etc.) are often less than 0.1 cm

2

. Fig-
ure 1.34 for Exercise 1.8 shows the die size and technology for several current
microprocessors.

Given the tremendous price pressures on commodity products such as DRAM
and SRAM, designers have included redundancy as a way to raise yield. For a
number of years, DRAMs have regularly included some redundant memory cells,
so that a certain number of flaws can be accommodated. Designers have used
similar techniques in both standard SRAMs and in large SRAM arrays used for
caches within microprocessors. Obviously, the presence of redundant entries can
be used to significantly boost the yield.

Processing a 30 cm diameter wafer in a leading-edge technology with four to
six metal layers costs between $5000 and $6000 in 2001. Assuming a processed
wafer cost of $5500, the cost of the 0.49 cm

2

 die would be around $5.42, while
the cost per die of the 1 cm

2

 die would be about $15.03, or almost three times the
cost for a die that is two times larger.

What should a computer designer remember about chip costs? The manufac-
turing process dictates the wafer cost, wafer yield, and defects per unit area, so
the sole control of the designer is die area. Since

α

 is around 4 for the advanced
processes in use today, it would appear that the cost of a die would grow with the
fourth power of the die size. In practice, however, because the number of defects
per unit area is small, the number of good dies per wafer, and hence the cost per
die, grows roughly as the square of the die area. The computer designer affects
die size, and hence cost, both by what functions are included on or excluded from
the die and by the number of I/O pins.

Before we have a part that is ready for use in a computer, the die must be
tested (to separate the good dies from the bad), packaged, and tested again after
packaging. These steps all add significant costs. These processes and their contri-
bution to cost are discussed and evaluated in Exercise 1.8.

The above analysis has focused on the variable costs of producing a func-
tional die, which is appropriate for high-volume integrated circuits. There is,
however, one very important part of the fixed cost that can significantly impact
the cost of an integrated circuit for low volumes (less than 1 million parts),
namely, the cost of a mask set. Each step in the integrated circuit process requires

Die yield 1 0.6 0.49×
4.0

------------------------+
 4–

0.75= =

1.4 Cost, Price, and Their Trends

�

21

a separate mask. Thus, for modern high-density fabrication processes with four to
six metal layers, mask costs often exceed $1 million. Obviously, this large fixed
cost affects the cost of prototyping and debugging runs and, for small-volume
production, can be a significant part of the production cost. Since mask costs are
likely to continue to increase, designers may incorporate reconfigurable logic to
enhance the flexibility of a part, or choose to use gate arrays (which have fewer
custom mask levels) and thus reduce the cost implications of masks.

Distribution of Cost in a System: An Example

To put the costs of silicon in perspective, Figure 1.9 shows the approximate cost
breakdown for a $1000 PC in 2001. Although the costs of some parts of this
machine can be expected to drop over time, other components, such as the pack-
aging and power supply, have little room for improvement. Furthermore, we can
expect that future machines will have larger memories and disks, meaning that
prices drop more slowly than the technology improvement.

System Subsystem Fraction of total

Cabinet Sheet metal, plastic 2%

Power supply, fans 2%

Cables, nuts, bolts 1%

Shipping box, manuals 1%

Subtotal 6%

Processor board Processor 22%

DRAM (128 MB) 5%

Video card 5%

Motherboard with basic I/O support,
networking

5%

Subtotal 37%

I/O devices Keyboard and mouse 3%

Monitor 19%

Hard disk (20 GB) 9%

DVD drive 6%

Subtotal 37%

Software OS + Basic Office Suite 20%

Figure 1.9 Estimated distribution of costs of the components in a $1000 PC in 2001.
Notice that the largest single item is the CPU, closely followed by the monitor. (Interest-
ingly, in 1995, the DRAM memory at about 1/3 of the total cost was the most expensive
component! Since then, cost per MB has dropped by about a factor of 15!) Touma
[1993] discusses computer system costs and pricing in more detail. These numbers are
based on estimates of volume pricing for the various components.

22 � Chapter One Fundamentals of Computer Design

Cost versus Price—Why They Differ and By How Much

Costs of components may confine a designer’s desires, but they are still far from
representing what the customer must pay. But why should a computer architec-
ture book contain pricing information? Cost goes through a number of changes
before it becomes price, and the computer designer should understand how a
design decision will affect the potential selling price. For example, changing cost
by $1000 may change price by $3000 to $4000. Without understanding the rela-
tionship of cost to price the computer designer may not understand the impact on
price of adding, deleting, or replacing components.

The relationship between price and volume can increase the impact of
changes in cost, especially at the low end of the market. Typically, fewer comput-
ers are sold as the price increases. Furthermore, as volume decreases, costs rise,
leading to further increases in price. Thus, small changes in cost can have a larger
than obvious impact. The relationship between cost and price is a complex one,
and entire books have been written on the subject. The purpose of this section is
to give you a simple introduction to what factors determine price, and to typical
ranges for these factors.

The categories that make up price can be shown either as a tax on cost or as a
percentage of the price. We will look at the information both ways. These differ-
ences between price and cost also depend on where in the computer marketplace
a company is selling. To show these differences, Figure 1.10 shows how the dif-
ference between cost of materials and list price is decomposed, with the price
increasing from left to right as we add each type of overhead.

Direct costs refer to the costs directly related to making a product. These
include labor costs, purchasing components, scrap (the leftover from yield), and
warranty, which covers the costs of systems that fail at the customer’s site during
the warranty period. Direct cost typically adds 10% to 30% to component cost.
Service or maintenance costs are not included because the customer typically
pays those costs, although a warranty allowance may be included here or in gross
margin, discussed next.

The next addition is called the gross margin, the company’s overhead that
cannot be billed directly to one product. This can be thought of as indirect cost. It
includes the company’s research and development (R&D), marketing, sales, man-
ufacturing equipment maintenance, building rental, cost of financing, pretax prof-
its, and taxes. When the component costs are added to the direct cost and gross
margin, we reach the average selling price—ASP in the language of MBAs—the
money that comes directly to the company for each product sold. The gross mar-
gin is typically 10% to 45% of the average selling price, depending on the
uniqueness of the product. Manufacturers of low-end PCs have lower gross mar-
gins for several reasons. First, their R&D expenses are lower. Second, their cost
of sales is lower, since they use indirect distribution (by mail, the Internet, phone
order, or retail store) rather than salespeople. Third, because their products are
less distinctive, competition is more intense, thus forcing lower prices and often
lower profits, which in turn lead to a lower gross margin.

1.4 Cost, Price, and Their Trends � 23

List price and average selling price are not the same, since companies typi-
cally offer volume discounts, lowering the average selling price. As personal
computers became commodity products, the retail markups have dropped signifi-
cantly, so list price and average selling price have closed.

As we said, pricing is sensitive to competition: A company may not be able to
sell its product at a price that includes the desired gross margin. In the worst case,
the price must be significantly reduced, lowering gross margin until profit
becomes negative! A company striving for market share can reduce price and
profit to increase the attractiveness of its products. If the volume grows suffi-
ciently, costs can be reduced. Remember that these relationships are extremely
complex and to understand them in depth would require an entire book, as
opposed to one section in one chapter. For example, if a company cuts prices, but
does not obtain a sufficient growth in product volume, the chief impact would be
lower profits.

Many engineers are surprised to find that most companies spend only 4% (in
the commodity PC business) to 12% (in the high-end server business) of their
income on R&D, which includes all engineering (except for manufacturing and
field engineering). This well-established percentage is reported in companies’
annual reports and tabulated in national magazines, so this percentage is unlikely
to change over time. In fact, experience has shown that computer companies with
R&D percentages of 15–20% rarely prosper over the long term.

Figure 1.10 The components of price for a $1000 PC. Each increase is shown along the bottom as a tax on the
prior price. The percentages of the new price for all elements are shown on the left of each column.

Direct costs

Component
costs

Component
costs

Component
costs

100% 83%

17%

Average
selling

price

Add 20% for
direct costs

62% 47%

13% 10%

25%

25%

Gross
margin

Average
discount

Direct costs

Component
costs

Gross
margin

Direct costs

19%

List
price

Add 33% for
gross margin

Add 33% for
average discount

24 � Chapter One Fundamentals of Computer Design

The preceding information suggests that a company uniformly applies fixed-
overhead percentages to turn cost into price, and this is true for many companies.
But another point of view is that R&D should be considered an investment. Thus
an investment of 4% to 12% of income means that every $1 spent on R&D should
lead to $8 to $25 in sales. This alternative point of view then suggests a different
gross margin for each product depending on the number sold and the size of the
investment.

Large, expensive machines generally cost more to develop—a machine cost-
ing 10 times as much to manufacture may cost many times as much to develop.
Since large, expensive machines generally do not sell as well as small ones, the
gross margin must be greater on the big machines for the company to maintain a
profitable return on its investment. This investment model places large machines
in double jeopardy—because there are fewer sold and they require larger R&D
costs—and gives one explanation for a higher ratio of price to cost versus smaller
machines.

The issue of cost and cost-performance is a complex one. There is no single
target for computer designers. At one extreme, high-performance design spares
no cost in achieving its goal. Supercomputers have traditionally fit into this cate-
gory, but the market that only cares about performance has been the slowest
growing portion of the computer market. At the other extreme is low-cost design,
where performance is sacrificed to achieve lowest cost; some portions of the
embedded market—for example, the market for cell phone microprocessors—
behave exactly like this. Between these extremes is cost-performance design,
where the designer balances cost versus performance. Most of the PC market, the
workstation market, and most of the server market (at least including both low-
end and midrange servers) operate in this region. In the past 10 years, as comput-
ers have downsized, both low-cost design and cost-performance design have
become increasingly important. This section has introduced some of the most
important factors in determining cost; the next section deals with performance.

When we say one computer is faster than another, what do we mean? The user of
a desktop machine may say a computer is faster when a program runs in less
time, while the computer center manager running a large server system may say a
computer is faster when it completes more jobs in an hour. The computer user is
interested in reducing response time—the time between the start and the comple-
tion of an event—also referred to as execution time. The manager of a large data
processing center may be interested in increasing throughput—the total amount
of work done in a given time.

In comparing design alternatives, we often want to relate the performance of
two different machines, say, X and Y. The phrase “X is faster than Y” is used here
to mean that the response time or execution time is lower on X than on Y for the
given task. In particular, “X is n times faster than Y” will mean

1.5 Measuring and Reporting Performance

1.5 Measuring and Reporting Performance � 25

 =

Since execution time is the reciprocal of performance, the following relationship
holds:

n = = =

The phrase “the throughput of X is 1.3 times higher than Y” signifies here that
the number of tasks completed per unit time on machine X is 1.3 times the num-
ber completed on Y.

Because performance and execution time are reciprocals, increasing perfor-
mance decreases execution time. To help avoid confusion between the terms
increasing and decreasing, we usually say “improve performance” or “improve
execution time” when we mean increase performance and decrease execution
time.

Whether we are interested in throughput or response time, the key measure-
ment is time: The computer that performs the same amount of work in the least
time is the fastest. The difference is whether we measure one task (response time)
or many tasks (throughput). Unfortunately, time is not always the metric quoted
in comparing the performance of computers. A number of popular measures have
been adopted in the quest for an easily understood, universal measure of com-
puter performance, with the result that a few innocent terms have been abducted
from their well-defined environment and forced into a service for which they
were never intended. Our position is that the only consistent and reliable measure
of performance is the execution time of real programs, and that all proposed alter-
natives to time as the metric or to real programs as the items measured have even-
tually led to misleading claims or even mistakes in computer design. The dangers
of a few popular alternatives are shown in Section 1.9.

Measuring Performance

Even execution time can be defined in different ways depending on what we
count. The most straightforward definition of time is called wall-clock time,
response time, or elapsed time, which is the latency to complete a task, including
disk accesses, memory accesses, input/output activities, operating system over-
head—everything. With multiprogramming the CPU works on another program
while waiting for I/O and may not necessarily minimize the elapsed time of one
program. Hence we need a term to take this activity into account. CPU time rec-
ognizes this distinction and means the time the CPU is computing, not including
the time waiting for I/O or running other programs. (Clearly the response time
seen by the user is the elapsed time of the program, not the CPU time.) CPU time
can be further divided into the CPU time spent in the program, called user CPU

Execution timeY

Execution timeX
-- n

Execution timeY

Execution timeX
--

1
PerformanceY

1
PerformanceX

PerformanceX

PerformanceY

26 � Chapter One Fundamentals of Computer Design

time, and the CPU time spent in the operating system performing tasks requested
by the program, called system CPU time.

These distinctions are reflected in the UNIX time command, which returns
four measurements when applied to an executing program:

90.7u 12.9s 2:39 65%

User CPU time is 90.7 seconds, system CPU time is 12.9 seconds, elapsed time is
2 minutes and 39 seconds (159 seconds), and the percentage of elapsed time that
is CPU time is (90.7 + 12.9)/159 or 65%. More than a third of the elapsed time in
this example was spent waiting for I/O or running other programs or both. Many
measurements ignore system CPU time because of the inaccuracy of operating
systems’ self-measurement (the above inaccurate measurement came from
UNIX) and the inequity of including system CPU time when comparing perfor-
mance between machines with differing system codes. On the other hand, system
code on some machines is user code on others, and no program runs without
some operating system running on the hardware, so a case can be made for using
the sum of user CPU time and system CPU time.

In the present discussion, a distinction is maintained between performance
based on elapsed time and that based on CPU time. The term system perfor-
mance is used to refer to elapsed time on an unloaded system, while CPU
performance refers to user CPU time on an unloaded system. We will focus on
CPU performance in this chapter, though we do consider performance measure-
ments based on elapsed time.

Choosing Programs to Evaluate Performance

Dhrystone does not use floating point. Typical programs don’t . . .

Rick Richardson
Clarification of Dhrystone (1988)

This program is the result of extensive research to determine the instruction mix of
a typical Fortran program. The results of this program on different machines
should give a good indication of which machine performs better under a typical
load of Fortran programs. The statements are purposely arranged to defeat opti-
mizations by the compiler.

H. J. Curnow and B. A. Wichmann
Comments on the Whetstone benchmark (1976)

A computer user who runs the same programs day in and day out would be the
perfect candidate to evaluate a new computer. To evaluate a new system the user
would simply compare the execution time of her workload—the mixture of pro-
grams and operating system commands that users run on a machine. Few are in
this happy situation, however. Most must rely on other methods to evaluate
machines and often other evaluators, hoping that these methods will predict per-

1.5 Measuring and Reporting Performance � 27

formance for their usage of the new machine. There are five levels of programs
used in such circumstances, listed below in decreasing order of accuracy of
prediction.

1. Real applications—Although the buyer may not know what fraction of time
is spent on these programs, she knows that some users will run them to solve
real problems. Examples are compilers for C, text-processing software like
Word, and other applications like Photoshop. Real applications have input,
output, and options that a user can select when running the program. There is
one major downside to using real applications as benchmarks: Real applica-
tions often encounter portability problems arising from dependences on the
operating system or compiler. Enhancing portability often means modifying
the source and sometimes eliminating some important activity, such as inter-
active graphics, which tends to be more system dependent.

2. Modified (or scripted) applications—In many cases, real applications are
used as the building blocks for a benchmark, either with modifications to the
application or with a script that acts as stimulus to the application. Applica-
tions are modified for one of two primary reasons: to enhance portability or to
focus on one particular aspect of system performance. For example, to create
a CPU-oriented benchmark, I/O may be removed or restructured to minimize
its impact on execution time. Scripts are used to simulate application pro-
grams so as to reproduce interactive behavior, which might occur on a desk-
top system, or to simulate complex multiuser interaction, which occurs in a
server system.

3. Kernels—Several attempts have been made to extract small, key pieces from
real programs and use them to evaluate performance. “Livermore Loops” and
Linpack are the best known examples. Unlike real programs, no user would
run kernel programs; they exist solely to evaluate performance. Kernels are
best used to isolate performance of individual features of a machine to
explain the reasons for differences in performance of real programs.

4. Toy benchmarks—Toy benchmarks are typically between 10 and 100 lines of
code and produce a result the user already knows before running the toy pro-
gram. Programs like Sieve of Eratosthenes, Puzzle, and Quicksort are popular
because they are small, easy to type, and run on almost any computer. The
best use of such programs is beginning programming assignments.

5. Synthetic benchmarks—Similar in philosophy to kernels, synthetic bench-
marks try to match the average frequency of operations and operands of a
large set of programs. Whetstone and Dhrystone are the most popular syn-
thetic benchmarks. A description of these benchmarks and some of their flaws
appears in Section 1.9. No user runs synthetic benchmarks because they don’t
compute anything a user could want. Synthetic benchmarks are, in fact, even
further removed from reality than kernels because kernel code is extracted
from real programs, while synthetic code is created artificially to match an
average execution profile. Synthetic benchmarks are not even pieces of real
programs, although kernels might be.

28 � Chapter One Fundamentals of Computer Design

Because computer companies thrive or go bust depending on price-
performance of their products relative to others in the marketplace, tremendous
resources are available to improve performance of programs widely used in eval-
uating machines. Such pressures can skew hardware and software engineering
efforts to add optimizations that improve performance of synthetic programs, toy
programs, kernels, and even real programs. The advantage of the last of these is
that adding such optimizations is more difficult in real programs, though not
impossible. This fact has caused some benchmark providers to specify the rules
under which compilers must operate, as we will see shortly.

Benchmark Suites

Recently, it has become popular to put together collections of benchmarks to try
to measure the performance of processors with a variety of applications. Of
course, such suites are only as good as the constituent individual benchmarks.
Nonetheless, a key advantage of such suites is that the weakness of any one
benchmark is lessened by the presence of the other benchmarks. This advantage
is especially true if the methods used for summarizing the performance of the
benchmark suite reflect the time to run the entire suite, as opposed to rewarding
performance increases on programs that may be defeated by targeted optimiza-
tions. Later in this section, we discuss the strengths and weaknesses of different
methods for summarizing performance.

One of the most successful attempts to create standardized benchmark appli-
cation suites has been the SPEC (Standard Performance Evaluation Corporation),
which had its roots in the late 1980s efforts to deliver better benchmarks for
workstations. Just as the computer industry has evolved over time, so has the
need for different benchmark suites, and there are now SPEC benchmarks to
cover different application classes, as well as other suites based on the SPEC
model. All the SPEC benchmark suites are documented, together with reported
results, at www.spec.org.

Although we focus our discussion on the SPEC benchmarks in many of the
following sections, there is also a large set of benchmarks that have been devel-
oped for PCs running the Windows operating system, covering a variety of differ-
ent application environments, as Figure 1.11 shows.

Desktop Benchmarks

Desktop benchmarks divide into two broad classes: CPU-intensive benchmarks
and graphics-intensive benchmarks (although many graphics benchmarks include
intensive CPU activity). SPEC originally created a benchmark set focusing on
CPU performance (initially called SPEC89), which has evolved into its fourth
generation: SPEC CPU2000, which follows SPEC95 and SPEC92. (Figure 1.30
in Section 1.9 discusses the evolution of the benchmarks.) SPEC CPU2000, sum-
marized in Figure 1.12, consists of a set of 11 integer benchmarks (CINT2000)

1.5 Measuring and Reporting Performance � 29

and 14 floating-point benchmarks (CFP2000). The SPEC benchmarks are real
programs, modified for portability and to minimize the role of I/O in overall
benchmark performance. The integer benchmarks vary from part of a C compiler
to a VLSI place-and-route tool to a graphics application. The floating-point
benchmarks include code for quantum chromodynamics, finite element model-
ing, and fluid dynamics. The SPEC CPU suite is useful for CPU benchmarking
for both desktop systems and single-processor servers. We will see data on many
of these programs throughout this text.

In the next subsection, we show how a SPEC2000 report describes the
machine, compiler, and OS configuration. In Section 1.9 we describe some of the
pitfalls that have occurred in attempting to develop the SPEC benchmark suite, as
well as the challenges in maintaining a useful and predictive benchmark suite.

Although SPEC CPU2000 is aimed at CPU performance, two different types
of graphics benchmarks were created by SPEC: SPECviewperf (see www.spec.org)
is used for benchmarking systems supporting the OpenGL graphics library, while
SPECapc consists of applications that make extensive use of graphics. SPECview-
perf measures the 3D rendering performance of systems running under OpenGL
using a 3D model and a series of OpenGL calls that transform the model. SPECapc
consists of runs of several large applications, including

1. Pro/Engineer—A solid modeling application that does extensive 3D render-
ing. The input script is a model of a photocopying machine consisting of
370,000 triangles.

2. SolidWorks 2001—A 3D CAD/CAM design tool running a series of five tests
varying from I/O intensive to CPU intensive. The largest input is a model of
an assembly line consisting of 276,000 triangles.

Benchmark name Benchmark description

Business Winstone Runs a script consisting of Netscape Navigator and several office
suite products (Microsoft, Corel, WordPerfect). The script
simulates a user switching among and running different
applications.

CC Winstone Simulates multiple applications focused on content creation, such
as Photoshop, Premiere, Navigator, and various audio-editing
programs.

Winbench Runs a variety of scripts that test CPU performance, video system
performance, and disk performance using kernels focused on each
subsystem.

Figure 1.11 A sample of some of the many PC benchmarks. The first two are scripts
using real applications, and the last is a mixture of kernels and synthetic benchmarks.
These are all now maintained by Ziff Davis, a publisher of much of the literature in the
PC space. Ziff Davis also provides independent testing services. For more information
on these benchmarks, see www.etestinglabs.com/benchmarks/.

30 � Chapter One Fundamentals of Computer Design

3. Unigraphics V15—Based on an aircraft model and covering a wide spectrum
of Unigraphics functionality, including assembly, drafting, numeric control
machining, solid modeling, and optimization. The inputs are all part of an air-
craft design.

Benchmark Type Source Description

gzip Integer C Compression using the Lempel-Ziv algorithm

vpr Integer C FPGA circuit placement and routing

gcc Integer C Consists of the GNU C compiler generating optimized machine code

mcf Integer C Combinatorial optimization of public transit scheduling

crafty Integer C Chess-playing program

parser Integer C Syntactic English language parser

eon Integer C++ Graphics visualization using probabilistic ray tracing

perlmbk Integer C Perl (an interpreted string-processing language) with four input scripts

gap Integer C A group theory application package

vortex Integer C An object-oriented database system

bzip2 Integer C A block-sorting compression algorithm

twolf Integer C Timberwolf: a simulated annealing algorithm for VLSI place and route

wupwise FP F77 Lattice gauge theory model of quantum chromodynamics

swim FP F77 Solves shallow water equations using finite difference equations

mgrid FP F77 Multigrid solver over three-dimensional field

apply FP F77 Parabolic and elliptic partial differential equation solver

mesa FP C Three-dimensional graphics library

galgel FP F90 Computational fluid dynamics

art FP C Image recognition of a thermal image using neural networks

equake FP C Simulation of seismic wave propagation

facerec FP C Face recognition using wavelets and graph matching

ammp FP C Molecular dynamics simulation of a protein in water

lucas FP F90 Performs primality testing for Mersenne primes

fma3d FP F90 Finite element modeling of crash simulation

sixtrack FP F77 High-energy physics accelerator design simulation

apsi FP F77 A meteorological simulation of pollution distribution

Figure 1.12 The programs in the SPEC CPU2000 benchmark suites. The 11 integer programs (all in C, except one
in C++) are used for the CINT2000 measurement, while the 14 floating-point programs (6 in FORTRAN-77, 5 in C, and
3 in FORTRAN-90) are used for the CFP2000 measurement. See www.spec.org for more on these benchmarks.

1.5 Measuring and Reporting Performance � 31

Server Benchmarks

Just as servers have multiple functions, so there are multiple types of benchmarks.
The simplest benchmark is perhaps a CPU throughput-oriented benchmark. SPEC
CPU2000 uses the SPEC CPU benchmarks to construct a simple throughput
benchmark where the processing rate of a multiprocessor can be measured by run-
ning multiple copies (usually as many as there are CPUs) of each SPEC CPU
benchmark and converting the CPU time into a rate. This leads to a measurement
called the SPECrate.

Other than SPECrate, most server applications and benchmarks have signifi-
cant I/O activity arising from either disk or network traffic, including benchmarks
for file server systems, for Web servers, and for database and transaction-
processing systems. SPEC offers both a file server benchmark (SPECSFS) and a
Web server benchmark (SPECWeb). SPECSFS is a benchmark for measuring
NFS (Network File System) performance using a script of file server requests; it
tests the performance of the I/O system (both disk and network I/O) as well as the
CPU. SPECSFS is a throughput-oriented benchmark but with important response
time requirements. (Chapter 7 discusses some file and I/O system benchmarks in
detail.) SPECWeb is a Web server benchmark that simulates multiple clients
requesting both static and dynamic pages from a server, as well as clients posting
data to the server.

Transaction-processing (TP) benchmarks measure the ability of a system to
handle transactions, which consist of database accesses and updates. An airline
reservation system or a bank ATM system are typical simple TP systems; more
complex TP systems involve complex databases and decision making. In the mid-
1980s, a group of concerned engineers formed the vendor-independent Transac-
tion Processing Council (TPC) to try to create a set of realistic and fair bench-
marks for transaction processing. The first TPC benchmark, TPC-A, was
published in 1985 and has since been replaced and enhanced by four different
benchmarks. TPC-C, initially created in 1992, simulates a complex query envi-
ronment. TPC-H models ad hoc decision support—the queries are unrelated and
knowledge of past queries cannot be used to optimize future queries; the result is
that query execution times can be very long. TPC-R simulates a business decision
support system where users run a standard set of queries. In TPC-R, preknowl-
edge of the queries is taken for granted, and the DBMS system can be optimized
to run these queries. TPC-W is a Web-based transaction benchmark that simu-
lates the activities of a business-oriented transactional Web server. It exercises the
database system as well as the underlying Web server software. The TPC bench-
marks are described at www.tpc.org/.

All the TPC benchmarks measure performance in transactions per second. In
addition, they include a response time requirement, so that throughput perfor-
mance is measured only when the response time limit is met. To model real-world
systems, higher transaction rates are also associated with larger systems, both in
terms of users and the database that the transactions are applied to. Finally, the
system cost for a benchmark system must also be included, allowing accurate
comparisons of cost-performance.

32 � Chapter One Fundamentals of Computer Design

Embedded Benchmarks

Benchmarks for embedded computing systems are in a far more nascent state
than those for either desktop or server environments. In fact, many manufacturers
quote Dhrystone performance, a benchmark that was criticized and given up by
desktop systems more than 10 years ago! As mentioned earlier, the enormous
variety in embedded applications, as well as differences in performance require-
ments (hard real time, soft real time, and overall cost-performance), make the use
of a single set of benchmarks unrealistic. In practice, many designers of embed-
ded systems devise benchmarks that reflect their application, either as kernels or
as stand-alone versions of the entire application.

For those embedded applications that can be characterized well by kernel per-
formance, the best standardized set of benchmarks appears to be a new bench-
mark set: the EDN Embedded Microprocessor Benchmark Consortium (or
EEMBC, pronounced “embassy”). The EEMBC benchmarks fall into five
classes: automotive/industrial, consumer, networking, office automation, and
telecommunications. Figure 1.13 shows the five different application classes,
which include 34 benchmarks.

Although many embedded applications are sensitive to the performance of
small kernels, remember that often the overall performance of the entire application
(which may be thousands of lines) is also critical. Thus, for many embedded sys-
tems, the EMBCC benchmarks can only be used to partially assess performance.

Reporting Performance Results

The guiding principle of reporting performance measurements should be repro-
ducibility—list everything another experimenter would need to duplicate the
results. A SPEC benchmark report requires a fairly complete description of the

Benchmark type
Number of

kernels Example benchmarks

Automotive/industrial 16 6 microbenchmarks (arithmetic operations, pointer chasing, memory
performance, matrix arithmetic, table lookup, bit manipulation), 5 automobile
control benchmarks, and 5 filter or FFT benchmarks

Consumer 5 5 multimedia benchmarks (JPEG compress/decompress, filtering, and RGB
conversions)

Networking 3 Shortest-path calculation, IP routing, and packet flow operations

Office automation 4 Graphics and text benchmarks (Bézier curve calculation, dithering, image
rotation, text processing)

Telecommunications 6 Filtering and DSP benchmarks (autocorrelation, FFT, decoder, encoder)

Figure 1.13 The EEMBC benchmark suite, consisting of 34 kernels in five different classes. See www.eembc.org for
more information on the benchmarks and for scores.

1.5 Measuring and Reporting Performance � 33

machine and the compiler flags, as well as the publication of both the baseline
and optimized results. As an example, Figure 1.14 shows portions of the SPEC
CINT2000 report for a Dell Precision Workstation 410. In addition to hardware,
software, and baseline tuning parameter descriptions, a SPEC report contains the
actual performance times, shown both in tabular form and as a graph. A TPC
benchmark report is even more complete, since it must include results of a bench-
marking audit and must also include cost information.

A system’s software configuration can significantly affect the performance
results for a benchmark. For example, operating systems performance and sup-
port can be very important in server benchmarks. For this reason, these bench-
marks are sometimes run in single-user mode to reduce overhead. Additionally,
operating system enhancements are sometimes made to increase performance on
the TPC benchmarks. Likewise, compiler technology can play a big role in the
performance of compute-oriented benchmarks. The impact of compiler technol-
ogy can be especially large when modification of the source is allowed (see the
example with the EEMBC benchmarks in Figure 1.31 in Section 1.9) or when a
benchmark is particularly susceptible to an optimization (see the example from
SPEC described on page 58). For these reasons it is important to describe exactly
the software system being measured as well as whether any special nonstandard
modifications have been made.

Another way to customize the software to improve the performance of a
benchmark has been through the use of benchmark-specific flags; these flags
often caused transformations that would be illegal on many programs or would
slow down performance on others. To restrict this process and increase the signif-
icance of the SPEC results, the SPEC organization created a baseline perfor-
mance measurement in addition to the optimized performance measurement.
Baseline performance restricts the vendor to one compiler and one set of flags for
all the programs in the same language (C or FORTRAN). Figure 1.14 shows the
parameters for the baseline performance; in Section 1.9, we’ll see the tuning
parameters for the optimized performance runs on this machine.

In addition to the question of flags and optimization, another key question is
whether source code modifications or hand-generated assembly language are
allowed. There are four different approaches to addressing this question:

1. No source code modifications are allowed. The SPEC benchmarks fall into
this class, as do most of the standard PC benchmarks.

2. Source code modifications are allowed, but are essentially difficult or impos-
sible. Benchmarks like TPC-C rely on standard databases, such as Oracle or
Microsoft’s SQL server. Although these third-party vendors are interested in
the overall performance of their systems on important industry-standard
benchmarks, they are highly unlikely to make vendor-specific changes to
enhance the performance for one particular customer. TPC-C also relies
heavily on the operating system, which can be changed, provided those
changes become part of the production version.

34 � Chapter One Fundamentals of Computer Design

3. Source modifications are allowed. Several supercomputer benchmark suites
allow modification of the source code. For example, the NAS supercomputer
benchmarks specify the input and output and supply a version of the source,
but vendors are allowed to rewrite the source, including changing the algo-
rithms, as long as the modified version produces the same output. EEMBC
also allows source-level changes to its benchmarks and reports these as “opti-
mized” measurements, versus “out-of-the-box” measurements, which allow
no changes.

4. Hand-coding is allowed. EEMBC allows assembly language coding of its
benchmarks. The small size of its kernels makes this approach attractive,
although in practice with larger embedded applications it is unlikely to be
used, except for small loops. Figure 1.31 in Section 1.9 shows the significant
benefits from hand-coding on several different embedded processors.

The key issue that benchmark designers face in deciding to allow modifica-
tion of the source is whether such modifications will reflect real practice and pro-

Hardware Software

Model number Precision WorkStation 410 O/S and version Windows NT 4.0

CPU 700 MHz, Pentium III Compilers and version Intel C/C++ Compiler 4.5

Number of CPUs 1 Other software See below

Primary cache 16KBI+16KBD on chip File system type NTFS

Secondary cache 256KB(I+D) on chip System state Default

Other cache None

Memory 256 MB ECC PC100 SDRAM

Disk subsystem SCSI

Other hardware None

SPEC CINT2000 base tuning parameters/notes/summary of changes:

+FDO: PASS1=-Qprof_gen PASS2=-Qprof_use

 Base tuning: -QxK -Qipo_wp shlW32M.lib +FDO

 shlW32M.lib is the SmartHeap library V5.0 from MicroQuill www.microquill.com

 Portability flags:

 176.gcc: -Dalloca=_alloca /F10000000 -Op

 186.crafy: -DNT_i386

 253.perlbmk: -DSPEC_CPU2000_NTOS -DPERLDLL /MT

 254.gap: -DSYS_HAS_CALLOC_PROTO -DSYS_HAS_MALLOC_PROTO

Figure 1.14 The machine, software, and baseline tuning parameters for the CINT2000 base report on a Dell Pre-
cision WorkStation 410. These data are for the base CINT2000 report. The data are available online at www.spec.org
/osg/cpu2000/results/cpu2000.html.

1.5 Measuring and Reporting Performance � 35

vide useful insight to users, or whether such modifications simply reduce the
accuracy of the benchmarks as predictors of real performance.

Comparing and Summarizing Performance

Comparing performance of computers is rarely a dull event, especially when the
designers are involved. Charges and countercharges fly across the Internet; one is
accused of underhanded tactics, and another of misleading statements. Since
careers sometimes depend on the results of such performance comparisons, it is
understandable that the truth is occasionally stretched. But more frequently dis-
crepancies can be explained by differing assumptions or lack of information.

We would like to think that if we could just agree on the programs, the exper-
imental environments, and the definition of faster, then misunderstandings would
be avoided, leaving the networks free for scholarly discourse. Unfortunately,
that’s not the reality. Once we agree on the basics, battles are then fought over
what is the fair way to summarize relative performance of a collection of pro-
grams. For example, two articles on summarizing performance in the same jour-
nal took opposing points of view. Figure 1.15, taken from one of the articles, is an
example of the confusion that can arise.

Using our definition of faster than, the following statements hold:

A is 10 times faster than B for program P1.

B is 10 times faster than A for program P2.

A is 20 times faster than C for program P1.

C is 50 times faster than A for program P2.

B is 2 times faster than C for program P1.

C is 5 times faster than B for program P2.

Taken individually, any one of these statements may be of use. Collectively, how-
ever, they present a confusing picture—the relative performance of computers A,
B, and C is unclear.

Computer A Computer B Computer C

Program P1 (secs) 1 10 20

Program P2 (secs) 1000 100 20

Total time (secs) 1001 110 40

Figure 1.15 Execution times of two programs on three machines. Data from Figure I
of Smith [1988].

36 � Chapter One Fundamentals of Computer Design

Total Execution Time: A Consistent Summary Measure

The simplest approach to summarizing relative performance is to use total execu-
tion time of the two programs. Thus

B is 9.1 times faster than A for programs P1 and P2.

C is 25 times faster than A for programs P1 and P2.

C is 2.75 times faster than B for programs P1 and P2.

This summary tracks execution time, our final measure of performance. If the
workload consisted of running programs P1 and P2 an equal number of times, the
statements above would predict the relative execution times for the workload on
each machine.

An average of the execution times that tracks total execution time is the arith-
metic mean:

where Timei is the execution time for the i th program of a total of n in the work-
load.

Weighted Execution Time

The question arises: What is the proper mixture of programs for the workload?
Are programs P1 and P2 in fact run equally in the workload, as assumed by the
arithmetic mean? If not, then there are two approaches that have been tried for
summarizing performance. The first approach when given an unequal mix of pro-
grams in the workload is to assign a weighting factor wi to each program to indi-
cate the relative frequency of the program in that workload. If, for example, 20%
of the tasks in the workload were program P1 and 80% of the tasks in the work-
load were program P2, then the weighting factors would be 0.2 and 0.8. (Weight-
ing factors add up to 1.) By summing the products of weighting factors and
execution times, a clear picture of performance of the workload is obtained. This
is called the weighted arithmetic mean:

where Weighti is the frequency of the ith program in the workload and Timei is
the execution time of that program. Figure 1.16 shows the data from Figure 1.15
with three different weightings, each proportional to the execution time of a
workload with a given mix.

1
n
--- Timei

i 1=

n

∑

Weighti Timei×
i 1=

n

∑

1.5 Measuring and Reporting Performance � 37

Normalized Execution Time and the Pros and Cons of Geometric Means

A second approach to unequal mixture of programs in the workload is to nor-
malize execution times to a reference machine and then take the average of the
normalized execution times. This is the approach used by the SPEC benchmarks,
where a base time on a SPARCstation is used for reference. This measurement
gives a warm fuzzy feeling because it suggests that performance of new programs
can be predicted by simply multiplying this number times its performance on the
reference machine.

Average normalized execution time can be expressed as either an arithmetic
or geometric mean. The formula for the geometric mean is

where Execution time ratioi is the execution time, normalized to the reference
machine, for the ith program of a total of n in the workload. Geometric means
also have a nice property for two samples Xi and Yi:

 = Geometric mean

Programs Weightings

 A B C W(1) W(2) W(3)

Program P1 (secs) 1.00 10.00 20.00 0.50 0.909 0.999

Program P2 (secs) 1000.00 100.00 20.00 0.50 0.091 0.001

Arithmetic mean: W(1) 500.50 55.00 20.00

Arithmetic mean: W(2) 91.91 18.19 20.00

Arithmetic mean: W(3) 2.00 10.09 20.00

Figure 1.16 Weighted arithmetic mean execution times for three machines (A, B, C) and two programs (P1 and
P2) using three weightings (W1, W2, W3). The top table contains the original execution time measurements and
the weighting factors, while the bottom table shows the resulting weighted arithmetic means for each weighting.
W(1) equally weights the programs, resulting in a mean (row 3) that is the same as the unweighted arithmetic mean.
W(2) makes the mix of programs inversely proportional to the execution times on machine B; row 4 shows the arith-
metic mean for that weighting. W(3) weights the programs in inverse proportion to the execution times of the two
programs on machine A; the arithmetic mean with this weighting is given in the last row. The net effect of the second
and third weightings is to “normalize” the weightings to the execution times of programs running on that machine,
so that the running time will be spent evenly between each program for that machine. For a set of n programs each
taking Timei on one machine, the equal-time weightings on that machine are .wi

1

Timei
1

Timej

i 1=

n

∑×

--=

n

Execution time ratioi
i 1=

n

∏

Geometric mean Xi()
Geometric mean Yi()
--

Xi

Yi

38 � Chapter One Fundamentals of Computer Design

As a result, taking either the ratio of the means or the mean of the ratios yields the
same result. In contrast to arithmetic means, geometric means of normalized exe-
cution times are consistent no matter which machine is the reference. Hence, the
arithmetic mean should not be used to average normalized execution times. Fig-
ure 1.17 shows some variations using both arithmetic and geometric means of
normalized times.

Because the weightings in weighted arithmetic means are set proportionate to
execution times on a given machine, as in Figure 1.16, they are influenced not
only by frequency of use in the workload, but also by the peculiarities of a partic-
ular machine and the size of program input. The geometric mean of normalized
execution times, on the other hand, is independent of the running times of the
individual programs, and it doesn’t matter which machine is used to normalize. If
a situation arose in comparative performance evaluation where the programs
were fixed but the inputs were not, then competitors could rig the results of
weighted arithmetic means by making their best performing benchmark have the
largest input and therefore dominate execution time. In such a situation the geo-
metric mean would be less misleading than the arithmetic mean.

The strong drawback to geometric means of normalized execution times is
that they violate our fundamental principle of performance measurement—they
do not predict execution time. The geometric means from Figure 1.17 suggest
that for programs P1 and P2 the performance of machines A and B is the same,
yet this would only be true for a workload that ran program P1 100 times for
every occurrence of program P2 (Figure 1.16). The total execution time for such a
workload suggests that machines A and B are about 50% faster than machine C,
in contrast to the geometric mean, which says machine C is faster than A and B!
In general there is no workload for three or more machines that will match the
performance predicted by the geometric means of normalized execution times.
Our original reason for examining geometric means of normalized performance

Normalized to A Normalized to B Normalized to C

A B C A B C A B C

Program P1 1.0 10.0 20.0 0.1 1.0 2.0 0.05 0.5 1.0

Program P2 1.0 0.1 0.02 10.0 1.0 0.2 50.0 5.0 1.0

Arithmetic mean 1.0 5.05 10.01 5.05 1.0 1.1 25.03 2.75 1.0

Geometric mean 1.0 1.0 0.63 1.0 1.0 0.63 1.58 1.58 1.0

Total time 1.0 0.11 0.04 9.1 1.0 0.36 25.03 2.75 1.0

Figure 1.17 Execution times from Figure 1.15 normalized to each machine. The arithmetic mean performance
varies depending on which is the reference machine. In column 2, B’s execution time is five times longer than A’s,
although the reverse is true in column 4. In column 3, C is slowest, but in column 9, C is fastest. The geometric means
are consistent independent of normalization—A and B have the same performance, and the execution time of C is
0.63 of A or B (1/1.58 is 0.63). Unfortunately, the total execution time of A is 10 times longer than that of B, and B in
turn is about 3 times longer than C. As a point of interest, the relationship between the means of the same set of
numbers is always harmonic mean ≤ geometric mean ≤ arithmetic mean.

1.6 Quantitative Principles of Computer Design � 39

was to avoid giving equal emphasis to the programs in our workload, but is this
solution an improvement?

An additional drawback of using geometric mean as a method for summariz-
ing performance for a benchmark suite (as SPEC CPU2000 does) is that it
encourages hardware and software designers to focus their attention on the
benchmarks where performance is easiest to improve rather than on the bench-
marks that are slowest. For example, if some hardware or software improvement
can cut the running time for a benchmark from 2 seconds to 1, the geometric
mean will reward those designers with the same overall mark that it would give to
designers who improve the running time on another benchmark in the suite from
10,000 seconds to 5000 seconds. Of course, everyone interested in running the
second program thinks of the second batch of designers as their heroes and the
first group as useless. Small programs are often easier to “crack,” obtaining a
large but unrepresentative performance improvement, and the use of geometric
means rewards such behavior more than a measure that reflects total running
time.

The ideal solution is to measure a real workload and weight the programs
according to their frequency of execution. If this can’t be done, then normalizing
so that equal time is spent on each program on some machine at least makes the
relative weightings explicit and will predict execution time of a workload with
that mix. The problem above of unspecified inputs is best solved by specifying
the inputs when comparing performance. If results must be normalized to a spe-
cific machine, first summarize performance with the proper weighted measure
and then do the normalizing.

Lastly, we must remember that any summary measure necessarily loses infor-
mation, especially when the measurements may vary widely. Thus, it is important
both to ensure that the results of individual benchmarks, as well as the summary
number, are available. Furthermore, the summary number should be used with
caution, since the summary may not be the best indicator of performance for a
customer’s applications.

Now that we have seen how to define, measure, and summarize performance, we
can explore some of the guidelines and principles that are useful in design and
analysis of computers. In particular, this section introduces some important
observations about designing for performance and cost-performance, as well as
two equations that we can use to evaluate design alternatives.

Make the Common Case Fast

Perhaps the most important and pervasive principle of computer design is to
make the common case fast: In making a design trade-off, favor the frequent case
over the infrequent case. This principle also applies when determining how to

1.6 Quantitative Principles of Computer Design

40 � Chapter One Fundamentals of Computer Design

spend resources, since the impact on making some occurrence faster is higher if
the occurrence is frequent. Improving the frequent event, rather than the rare
event, will obviously help performance, too. In addition, the frequent case is
often simpler and can be done faster than the infrequent case. For example, when
adding two numbers in the CPU, we can expect overflow to be a rare circum-
stance and can therefore improve performance by optimizing the more common
case of no overflow. This may slow down the case when overflow occurs, but if
that is rare, then overall performance will be improved by optimizing for the nor-
mal case.

We will see many cases of this principle throughout this text. In applying this
simple principle, we have to decide what the frequent case is and how much per-
formance can be improved by making that case faster. A fundamental law, called
Amdahl’s Law, can be used to quantify this principle.

Amdahl’s Law

The performance gain that can be obtained by improving some portion of a com-
puter can be calculated using Amdahl’s Law. Amdahl’s Law states that the per-
formance improvement to be gained from using some faster mode of execution is
limited by the fraction of the time the faster mode can be used.

Amdahl’s Law defines the speedup that can be gained by using a particular
feature. What is speedup? Suppose that we can make an enhancement to a
machine that will improve performance when it is used. Speedup is the ratio

Speedup =

Alternatively,

Speedup =

Speedup tells us how much faster a task will run using the machine with the
enhancement as opposed to the original machine.

Amdahl’s Law gives us a quick way to find the speedup from some enhance-
ment, which depends on two factors:

1. The fraction of the computation time in the original machine that can be
converted to take advantage of the enhancement—For example, if 20
seconds of the execution time of a program that takes 60 seconds in total
can use an enhancement, the fraction is 20/60. This value, which we will call
Fractionenhanced, is always less than or equal to 1.

2. The improvement gained by the enhanced execution mode; that is, how much
faster the task would run if the enhanced mode were used for the entire pro-
gram—This value is the time of the original mode over the time of the

Performance for entire task using the enhancement when possible

Performance for entire task without using the enhancement

Execution time for entire task without using the enhancement

Execution time for entire task using the enhancement when possible

1.6 Quantitative Principles of Computer Design � 41

enhanced mode: If the enhanced mode takes 2 seconds for some portion of
the program that can completely use the mode, while the original mode took 5
seconds for the same portion, the improvement is 5/2. We will call this value,
which is always greater than 1, Speedupenhanced.

The execution time using the original machine with the enhanced mode will be
the time spent using the unenhanced portion of the machine plus the time spent
using the enhancement:

Execution timenew = Execution timeold ×

The overall speedup is the ratio of the execution times:

Speedupoverall = =

Example Suppose that we are considering an enhancement to the processor of a server sys-
tem used for Web serving. The new CPU is 10 times faster on computation in the
Web serving application than the original processor. Assuming that the original
CPU is busy with computation 40% of the time and is waiting for I/O 60% of the
time, what is the overall speedup gained by incorporating the enhancement?

Answer Fractionenhanced = 0.4
Speedupenhanced = 10

Speedupoverall = = ≈ 1.56

Amdahl’s Law expresses the law of diminishing returns: The incremental
improvement in speedup gained by an additional improvement in the perfor-
mance of just a portion of the computation diminishes as improvements are
added. An important corollary of Amdahl’s Law is that if an enhancement is only
usable for a fraction of a task, we can’t speed up the task by more than the recip-
rocal of 1 minus that fraction.

A common mistake in applying Amdahl’s Law is to confuse “fraction of time
converted to use an enhancement” and “fraction of time after enhancement is in
use.” If, instead of measuring the time that we could use the enhancement in a
computation, we measure the time after the enhancement is in use, the results
will be incorrect! (Try Exercise 1.3 to see how wrong.)

Amdahl’s Law can serve as a guide to how much an enhancement will
improve performance and how to distribute resources to improve cost-
performance. The goal, clearly, is to spend resources proportional to where time

1 – Fraction enhanced ()
Fraction

enhanced

Speedup

enhanced
 --+

Execution timeold

Execution timenew
-- 1

1 – Fraction enhanced ()
Fraction

enhanced

Speedup

enhanced
 --------------------------------------+

1

0.6 0.4
10
-------+

--------------------- 1
0.64

42

�

Chapter One

Fundamentals of Computer Design

is spent. Amdahl’s Law is particularly useful for comparing the overall system
performance of two alternatives, but it can also be applied to compare two CPU
design alternatives, as the following example shows.

Example

A common transformation required in graphics engines is square root. Implemen-
tations of floating-point (FP) square root vary significantly in performance, espe-
cially among processors designed for graphics. Suppose FP square root (FPSQR)
is responsible for 20% of the execution time of a critical graphics benchmark.
One proposal is to enhance the FPSQR hardware and speed up this operation by a
factor of 10. The other alternative is just to try to make all FP instructions in the
graphics processor run faster by a factor of 1.6; FP instructions are responsible
for a total of 50% of the execution time for the application. The design team
believes that they can make all FP instructions run 1.6 times faster with the same
effort as required for the fast square root. Compare these two design alternatives.

 Answer We can compare these two alternatives by comparing the speedups:

Speedup

FPSQR

 =

=

 = 1.22

Speedup

FP

 =

=

= 1.23

Improving the performance of the FP operations overall is slightly better because

of the higher frequency.

In the above example, we needed to know the time consumed by the new and
improved FP operations; often it is difficult to measure these times directly. In the
next section, we will see another way of doing such comparisons based on the use
of an equation that decomposes the CPU execution time into three separate com-
ponents. If we know how an alternative affects these three components, we can
determine its overall performance effect. Furthermore, it is often possible to build
simulators that measure these components before the hardware is actually
designed.

The CPU Performance Equation

Essentially all computers are constructed using a clock running at a constant rate.
These discrete time events are called

ticks, clock ticks, clock periods, clocks,
cycles,

 or

clock cycles.

Computer designers refer to the time of a clock period by
its duration (e.g., 1 ns) or by its rate (e.g., 1 GHz). CPU time for a program can
then be expressed two ways:

1

1 0.2–() 0.2
10
-------+

----------------------------------- 1
0.82

1

1 0.5–() 0.5
1.6
-------+

----------------------------------- 1
0.8125

CPU time CPU clock cycles for a program Clock cycle time×=

1.6 Quantitative Principles of Computer Design

�

43

or

CPU time =

In addition to the number of clock cycles needed to execute a program, we
can also count the number of instructions executed—the

instruction path length

or

instruction count

(IC). If we know the number of clock cycles and the instruc-
tion count, we can calculate the average number of

clock cycles per instruction

(CPI). Because it is easier to work with, and because we will deal with simple
processors in this chapter, we use CPI. Designers sometimes also use

instructions
per clock

 (IPC), which is the inverse of CPI.
CPI is computed as

CPI =

This CPU figure of merit provides insight into different styles of instruction sets
and implementations, and we will use it extensively in the next four chapters.

By transposing instruction count in the above formula, clock cycles can be
defined as IC

×

 CPI. This allows us to use CPI in the execution time formula:

or

CPU time =

Expanding the first formula into the units of measurement and inverting the clock
rate shows how the pieces fit together:

=

 = CPU time

As this formula demonstrates, CPU performance is dependent upon three charac-
teristics: clock cycle (or rate), clock cycles per instruction, and instruction count.
Furthermore, CPU time is

equally

 dependent on these three characteristics: A
10% improvement in any one of them leads to a 10% improvement in CPU time.

Unfortunately, it is difficult to change one parameter in complete isolation
from others because the basic technologies involved in changing each character-
istic are interdependent:

�

Clock cycle time

—Hardware technology and organization

�

CPI

—Organization and instruction set architecture

� Instruction count—Instruction set architecture and compiler technology

CPU clock cycles for a program
Clock rate

CPU clock cycles for a program
Instruction count

CPU time Instruction count Clock cycle time× Cycles per instruction×=

Instruction count Clock cycle time×
Clock rate

Instructions
Program

---------------------------- Clock cycles
Instruction

------------------------------× Seconds
Clock cycle
----------------------------× Seconds

Program

44 � Chapter One Fundamentals of Computer Design

Luckily, many potential performance improvement techniques primarily improve
one component of CPU performance with small or predictable impacts on the
other two.

Sometimes it is useful in designing the CPU to calculate the number of total
CPU clock cycles as

CPU clock cycles =

where ICi represents number of times instruction i is executed in a program and
CPIi represents the average number of instructions per clock for instruction i.
This form can be used to express CPU time as

and overall CPI as

The latter form of the CPI calculation uses each individual CPIi and the fraction
of occurrences of that instruction in a program (i.e., ICi ÷ Instruction count). CPIi
should be measured and not just calculated from a table in the back of a reference
manual since it must include pipeline effects, cache misses, and any other mem-
ory system inefficiencies.

Consider our earlier example, here modified to use measurements of the fre-
quency of the instructions and of the instruction CPI values, which, in practice,
are obtained by simulation or by hardware instrumentation.

Example Suppose we have made the following measurements:

Frequency of FP operations (other than FPSQR) = 25%

Average CPI of FP operations = 4.0

Average CPI of other instructions = 1.33

Frequency of FPSQR= 2%

CPI of FPSQR = 20

Assume that the two design alternatives are to decrease the CPI of FPSQR to 2 or
to decrease the average CPI of all FP operations to 2.5. Compare these two design
alternatives using the CPU performance equation.

ICi CPIi×
i 1=

n

∑

CPU time ICi CPIi×
i 1=

n

∑

Clock cycle time×=

CPI

ICi CPIi×
i 1=

n

∑
Instruction count
--

ICi

Instruction count
-- CPIi×

i 1=

n

∑= =

1.6 Quantitative Principles of Computer Design � 45

Answer First, observe that only the CPI changes; the clock rate and instruction count
remain identical. We start by finding the original CPI with neither enhancement:

We can compute the CPI for the enhanced FPSQR by subtracting the cycles saved
from the original CPI:

We can compute the CPI for the enhancement of all FP instructions the same way
or by summing the FP and non-FP CPIs. Using the latter gives us

Since the CPI of the overall FP enhancement is slightly lower, its performance
will be marginally better. Specifically, the speedup for the overall FP enhance-
ment is

Happily, this is the same speedup we obtained using Amdahl’s Law on page 42. It
is often possible to measure the constituent parts of the CPU performance equa-
tion. This is a key advantage for using the CPU performance equation versus
Amdahl’s Law in the previous example. In particular, it may be difficult to mea-
sure things such as the fraction of execution time for which a set of instructions is
responsible. In practice this would probably be computed by summing the prod-
uct of the instruction count and the CPI for each of the instructions in the set.
Since the starting point is often individual instruction count and CPI measure-
ments, the CPU performance equation is incredibly useful.

Measuring and Modeling the Components of the CPU
Performance Equation

To use the CPU performance equation as a design tool, we need to be able to
measure the various factors. For an existing processor, it is easy to obtain the exe-
cution time by measurement, and the clock speed is known. The challenge lies in
discovering the instruction count or the CPI. Most newer processors include
counters for both instructions executed and for clock cycles. By periodically

CPIoriginal CPIi

ICi

Instruction count
--

 ×
i 1=

n

∑=

4 25%×() 1.33 75%×() 2.0=+=

CPIwith new FPSQR CPIoriginal – 2% CPI old FPSQR – CPI of new FPSQR only ()× =

2.0 – 2% 20 – 2 ()× 1.64= =

CPInew FP 75% 1.33×() 25% 2.5×() 1.625=+=

Speedupnew FP

CPU timeoriginal

CPU timenew FP

IC Clock cycle CPIoriginal××
IC Clock cycle CPInew FP××
---= =

CPIoriginal

CPInew FP
------------------------ 2.00

1.625
------------- 1.23= = =

46

�

Chapter One

Fundamentals of Computer Design

monitoring these counters, it is also possible to attach execution time and instruc-
tion count to segments of the code, which can be helpful to programmers trying
to understand and tune the performance of an application. Often, a designer or
programmer will want to understand performance at a more fine-grained level
than what is available from the hardware counters. For example, they may want
to know why the CPI is what it is. In such cases, simulation techniques like those
used for processors that are being designed are used.

There are three general classes of simulation techniques that are used. In gen-
eral, the more sophisticated techniques yield more accuracy, particularly for more
recent architectures, at the cost of longer execution time. The first and simplest
technique, and hence the least costly, is profile-based, static modeling. In this
technique a dynamic execution profile of the program, which indicates how often
each instruction is executed, is obtained by one of three methods:

1.

By using hardware counters on the processor, which are periodically saved.
This technique often gives an approximate profile, but one that is within a few
percent of exact.

2.

By using instrumented execution, in which instrumentation code is compiled
into the program. This code is used to increment counters, yielding an exact
profile. (This technique can also be used to create a trace of memory
addresses that are accessed, which is useful for other simulation techniques.)

3.

By interpreting the program at the instruction set level, compiling instruction
counts in the process.

Once the profile is obtained, it is used to analyze the program in a static fash-
ion by looking at the code. Obviously, with the profile, the total instruction count
is easy to obtain. It is also easy to get a detailed dynamic instruction mix telling
what types of instructions were executed with what frequency. Finally, for simple
processors, it is possible to compute an approximation to the CPI. This approxi-
mation is computed by modeling and analyzing the execution of each basic block
(or straight-line code segment) and then computing an overall estimate of CPI or
total compute cycles by multiplying the estimate for each basic block by the
number of times it is executed. Although this simple model ignores memory
behavior and has severe limits for modeling complex pipelines, it is a reasonable
and very fast technique for modeling the performance of short, integer pipelines,
ignoring the memory system behavior.

Trace-driven simulation is a more sophisticated technique for modeling per-
formance and is particularly useful for modeling memory system performance. In
trace-driven simulation, a trace of the memory references executed is created,
usually either by simulation or by instrumented execution. The trace includes
what instructions were executed (given by the instruction address), as well as the
data addresses accessed.

Trace-driven simulation can be used in several different ways. The most com-
mon use is to model memory system performance, which can be done by simulat-
ing the memory system, including the caches and any memory management

1.6 Quantitative Principles of Computer Design

�

47

hardware using the address trace. A trace-driven simulation of the memory sys-
tem can be combined with a static analysis of pipeline performance to obtain a
reasonably accurate performance model for simple pipelined processors. For
more complex pipelines, the trace data can be used to perform a more detailed
analysis of the pipeline performance by simulation of the processor pipeline.
Since the trace data allows a simulation of the exact ordering of instructions,
higher accuracy can be achieved than with a static approach. Trace-driven simula-
tion typically isolates the simulation of any pipeline behavior from the memory
system. In particular, it assumes that the trace is completely independent of the
memory system behavior. As we will see in Chapters 3 and 5, this is not the case
for the most advanced processors—a third technique is needed.

The third technique, which is the most accurate and most costly, is execution-
driven simulation. In execution-driven simulation a detailed simulation of the
memory system and the processor pipeline are done simultaneously. This allows
the exact modeling of the interaction between the two, which is critical, as we
will see in Chapters 3 and 5.

There are many variations on these three basic techniques. We will see exam-
ples of these tools in later chapters and use various versions of them in the
exercises.

Principle of Locality

Although Amdahl’s Law is a theorem that applies to any system, other important
fundamental observations come from properties of programs. The most important
program property that we regularly exploit is

principle of locality:

 Programs tend
to reuse data and instructions they have used recently. A widely held rule of
thumb is that a program spends 90% of its execution time in only 10% of the
code. An implication of locality is that we can predict with reasonable accuracy
what instructions and data a program will use in the near future based on its
accesses in the recent past.

Principle of locality also applies to data accesses, though not as strongly as to
code accesses. Two different types of locality have been observed.

Temporal
locality

states that recently accessed items are likely to be accessed in the near
future.

Spatial locality

 says that items whose addresses are near one another tend
to be referenced close together in time. We will see these principles applied in
Chapter 5.

Take Advantage of Parallelism

Taking advantage of parallelism is one of the most important methods for
improving performance. We give three brief examples, which are expounded on
in later chapters. Our first example is the use of parallelism at the system level. To
improve the throughput performance on a typical server benchmark, such as
SPECWeb or TPC, multiple processors and multiple disks can be used. The
workload of handling requests can then be spread among the CPUs or disks,

48

�

Chapter One

Fundamentals of Computer Design

resulting in improved throughput. This is the reason that scalability is viewed as a
valuable asset for server applications.

At the level of an individual processor, taking advantage of parallelism
among instructions is critical to achieving high performance. One of the simplest
ways to do this is through pipelining. The basic idea behind pipelining, which is
explained in more detail in Appendix A and is a major focus of Chapter 3, is to
overlap the execution of instructions, so as to reduce the total time to complete a
sequence of instructions. Viewed from the perspective of the CPU performance
equation, we can think of pipelining as reducing the CPI by allowing instructions
that take multiple cycles to overlap. A key insight that allows pipelining to work
is that not every instruction depends on its immediate predecessor, and thus, exe-
cuting the instructions completely or partially in parallel may be possible.

Parallelism can also be exploited at the level of detailed digital design. For
example, set-associative caches use multiple banks of memory that are typically
searched in parallel to find a desired item. Modern ALUs use carry-lookahead,
which uses parallelism to speed the process of computing sums from linear to
logarithmic in the number of bits per operand.

There are many different ways designers take advantage of parallelism. One
common class of techniques is parallel computation of two or more

possible

 out-
comes, followed by late selection. This technique is used in carry select adders, in
set-associative caches, and in handling branches in pipelines. Virtually every
chapter in this book will have an example of how performance is enhanced
through the exploitation of parallelism.

In the “Putting It All Together” sections that appear near the end of every chapter,
we show real examples that use the principles in that chapter. In this section we
look at measures of performance and price-performance, first in desktop systems
using the SPEC CPU benchmarks, then in servers using TPC-C as the bench-
mark, and finally in the embedded market using EEMBC as the benchmark.

Performance and Price-Performance for Desktop Systems

Although there are many benchmark suites for desktop systems, a majority of
them are OS or architecture specific. In this section we examine the CPU perfor-
mance and price-performance of a variety of desktop systems using the SPEC
CPU2000 integer and floating-point suites. As mentioned earlier, SPEC CPU2000
summarizes CPU performance using a geometric mean normalized to a Sun sys-
tem, with larger numbers indicating higher performance.

 Each system was configured with one CPU, 512 MB of SDRAM (with ECC
if available), approximately 20 GB of disk, a fast graphics system, and a 10/100M
bit Ethernet connection. The seven systems we examined and their processors
and price are shown in Figure 1.18. The wide variation in price is driven by a

1.7 Putting It All Together: Performance and
Price-Performance

1.7 Putting It All Together: Performance and Price-Performance

�

49

number of factors, including system expandability, the use of cheaper disks (ATA
versus SCSI), less expensive memory (PC memory versus custom DIMMs), soft-
ware differences (Linux or a Microsoft OS versus a vendor-specific OS), the cost
of the CPU, and the commoditization effect, which we discussed in Section 1.4.
(See the further discussion on price variation in the caption of Figure 1.18.)

Figure 1.19 shows the performance and the price-performance of these seven
systems using SPEC CINT2000 as the metric. The Compaq system using the
AMD Athlon CPU offers both the highest performance and the best price-
performance, followed by the two Dell systems, which have comparable price-
performance, although the Pentium 4 system is faster. The Sunblade 100 has the
lowest performance, but somewhat better price-performance than the other
UNIX-based workstation systems.

Figure 1.20 shows the performance and price-performance for the SPEC
floating-point benchmarks. The floating-point instruction set enhancements in the
Pentium 4 give it a clear performance advantage, although the Compaq Athlon-
based system still has superior price-performance. The IBM, HP, and Sunblade
1000 all outperform the Dell 420 with a Pentium III, but the Dell system still
offers better price-performance than the IBM, Sun, or HP workstations.

Vendor Model Processor Clock rate (MHz) Price

Compaq Presario 7000 AMD Athlon 1,400 $2,091

Dell Precision 420 Intel Pentium III 1,000 $3,834

Dell Precision 530 Intel Pentium 4 1,700 $4,175

HP Workstation c3600 PA 8600 552 $12,631

IBM RS6000 44P/170 IBM III-2 450 $13,889

Sun Sunblade 100 UltraSPARC II-e 500 $2,950

Sun Sunblade 1000 UltraSPARC III 750 $9,950

Figure 1.18

Seven different desktop systems from five vendors using seven differ-

ent microprocessors showing the processor, its clock rate, and the selling price. All
these systems are configured with 512 MB of ECC SDRAM, a high-end graphics system
(which is

not

 the highest-performance system available for the more expensive plat-
forms), and approximately 20 GB of disk. Many factors are responsible for the wide vari-
ation in price despite these common elements. First, the systems offer different levels of
expandability (with the Presario system being the least expandable, the Dell systems
and Sunblade 100 being moderately expandable, and the HP, IBM, and Sunblade 1000
being very flexible and expandable). Second, the use of cheaper disks (ATA versus SCSI)
and less expensive memory (PC memory versus custom DIMMs) has a significant
impact. Third, the cost of the CPU varies by at least a factor of 2. In 2001 the Athlon sold
for about $200, the Pentium III for about $240, and the Pentium 4 for about $500.
Fourth, software differences (Linux or a Microsoft OS versus a vendor-specific OS) prob-
ably affect the final price. Fifth, the lower-end systems use PC commodity parts in oth-
ers areas (fans, power supply, support chip sets), which lower costs. Finally, the
commoditization effect, which we discussed in Section 1.4, is at work, especially for the
Compaq and Dell systems. These prices were as of July 2001.

50

�

Chapter One

Fundamentals of Computer Design

Figure 1.19

Performance and price-performance for seven systems are measured using SPEC CINT2000 as the
benchmark.

With the exception of the Sunblade 100 (Sun’s low-end entry system), price-performance roughly paral-
lels performance, contradicting the conventional wisdom—at least on the desktop—that higher-performance sys-
tems carry a disproportionate price premium. Price-performance is plotted as CINT2000 performance per $1000 in
system cost. These performance numbers and prices were as of July 2001. The measurements are available online at

www.spec.org/osg/cpu2000/.

Figure 1.20

Performance and price-performance for seven systems are measured using SPEC CFP2000 as the
benchmark.

Price-performance is plotted as CFP2000 performance per $1000 in system cost. The dramatically
improved floating-point performance of the Pentium 4 versus the Pentium III is clear in this figure. Price-performance
partially parallels performance but not as clearly as in the case of the integer benchmarks. These performance num-
bers and prices were as of July 2001. The measurements are available online at

www.spec.org/osg/cpu2000/.

SPECbase
CINT2000

SPEC CINT2000
per $1000 in price

0

600

500

400

300

200

100

Compaq
Presario

7000

Dell
Precision

530

Dell
Precision

420

HP
Workstation

c3600

Sun
Sunblade
1000/1750

IBM
RS6000
44P/170

Sun
Sunblade

100

25

0

50

75

100

125

150

175

200

225

250

SPECbase CINT2000

SPEC CINT2000
performance/cost

SPECbase
CFP2000

SPEC CFP2000
per $1000 in price

0

600

550

500

450

400

350

300

250

200

150

100

50

Dell
Precision

530

Compaq
Presario

7000

HP
Workstation

c3600

Sun
Sunblade
1000/1750

IBM
RS6000
44P/170

Dell
Precision

420

Sun
Sunblade

100

25

0

50

75

100

125

150

175

200

225

250

SPECbase CFP2000

SPEC CFP2000
performance/cost

1.7 Putting It All Together: Performance and Price-Performance � 51

Performance and Price-Performance for
Transaction-Processing Servers

One of the largest server markets is online transaction processing (OLTP), which
we described earlier. The standard industry benchmark for OLTP is TPC-C,
which relies on a database system to perform queries and updates. Five factors
make the performance of TPC-C particularly interesting. First, TPC-C is a rea-
sonable approximation to a real OLTP application; although this makes bench-
mark setup complex and time-consuming, it also makes the results reasonably
indicative of real performance for OLTP. Second, TPC-C measures total system
performance, including the hardware, the operating system, the I/O system, and
the database system, making the benchmark more predictive of real performance.
Third, the rules for running the benchmark and reporting execution time are very
complete, resulting in more comparable numbers. Fourth, because of the impor-
tance of the benchmark, computer system vendors devote significant effort to
making TPC-C run well. Fifth, vendors are required to report both performance
and price-performance, enabling us to examine both.

Because the OLTP market is large and quite varied, there is an incredible
range of computing systems used for these applications, ranging from small
single-processor servers to midrange multiprocessor systems to large-scale clus-
ters consisting of tens to hundreds of processors. To allow an appreciation for this
diversity and its range of performance and price-performance, we will examine
six of the top results by performance (and the comparative price-performance)
and six of the top results by price-performance (and the comparative perfor-
mance). For TPC-C, performance is measured in transactions per minute (TPM),
while price-performance is measured in TPM per dollar. Figure 1.21 shows the
characteristics of a dozen systems whose performance or price-performance is
near the top in one measure or the other.

Figure 1.22 charts the performance and price-performance of six of the
highest-performing OLTP systems described in Figure 1.21. The IBM cluster
system, consisting of 280 Pentium III processors, provides the highest overall
performance, beating any other system by almost a factor of 3, as well as the best
price-performance by just over a factor of 1.5. The other systems are all
moderate-scale multiprocessors and offer fairly comparable performance and
similar price-performance to the others in the group. Chapters 6 and 8 discuss the
design of cluster and multiprocessor systems.

Figure 1.23 charts the performance and price-performance of the six OLTP
systems from Figure 1.21 with the best price-performance. These systems are all
multiprocessor systems, and, with the exception of the HP system, are based on
Pentium III processors. Although the smallest system (the three-processor Dell
system) has the best price-performance, several of the other systems offer better
performance at about a factor of 0.65 of the price-performance. Notice that the
systems with the best price-performance in Figure 1.23 average almost four times
better in price-performance (TPM/$ = 99 versus 27) than the high-performance
systems in Figure 1.22.

52 � Chapter One Fundamentals of Computer Design

Performance and Price-Performance for Embedded Processors

Comparing performance and price-performance of embedded processors is more
difficult than for the desktop or server environments because of several character-
istics. First, benchmarking is in its comparative infancy in the embedded space.
Although the EEMBC benchmarks represent a substantial advance in benchmark
availability and benchmark practice, as we discussed earlier, these benchmarks
have significant drawbacks. Equally importantly, in the embedded space, proces-
sors are often designed for a particular class of applications; such designs are
often not measured outside of their application space, and when they are, they
may not perform well. Finally, as mentioned earlier, cost and power are often the
most important factors for an embedded application. Although we can partially
measure cost by looking at the cost of the processor, other aspects of the design

Vendor and system CPUs Database OS Price

IBM xSeries 370 c/s 280 Pentium III
@ 900 MHz

Microsoft SQL
Server 2000

Microsoft Windows
Advanced Server

$15,543,346

Compaq AlphaServer GS 320 32 Alpha 21264
@ 1 GHz

Oracle 9i Compaq Tru64
UNIX

$10,286,029

Fujitsu PRIMEPOWER 20000 48 SPARC64 GP
@ 563 MHz

SymfoWARE Server
Enterprise

Sun Solaris 8 $9,671,742

IBM pSeries 680 7017-S85 24 IBM RS64-IV
@ 600 MHz

Oracle 8 v8.1.7.1 IBM AIX 4.3.3 $7,546,837

HP 9000 Enterprise Server 48 HP PA-RISC 8600
@ 552 MHz

Oracle8 v8.1.7.1 HP UX 11.i 64-bit $8,522,104

IBM iSeries 400 840-2420 24 iSeries400 Model 840
@ 450 MHz

IBM DB2 for
AS/400 V4

IBM OS/400 V4 $8,448,137

Dell PowerEdge 6400 3 Pentium III
@ 700 MHz

Microsoft SQL
Server 2000

Microsoft Windows
2000

$131,275

IBM xSeries 250 c/s 4 Pentium III
@ 700 MHz

Microsoft SQL
Server 2000

Microsoft Windows
Advanced Server

$297,277

Compaq Proliant ML570
6/700 2

4 Pentium III
@ 700 MHz

Microsoft SQL
Server 2000

Microsoft Windows
Advanced Server

$375,016

HP NetServer LH 6000 6 Pentium III
@ 550 MHz

Microsoft SQL
Server 2000

Microsoft Windows
NT Enterprise

$372,805

NEC Express 5800/180 8 Pentium III
@ 900 MHz

Microsoft SQL
Server 2000

Microsoft Windows
Advanced Server

$682,724

 HP 9000 / L2000 4 PA-RISC
8500 @ 440 MHz

Sybase Adaptive
Server

HP UX 11.0 64-bit $368,367

Figure 1.21 The characteristics of a dozen OLTP systems with either high total performance (top half of the
table) or superior price-performance (bottom half of the table). The IBM exSeries with 280 Pentium IIIs is a cluster,
while all the other systems are tightly coupled multiprocessors. Surprisingly, none of the top performing systems by
either measure are uniprocessors! The system descriptions and detailed benchmark reports are available at
www.tpc.org/.

1.7 Putting It All Together: Performance and Price-Performance � 53

Figure 1.22 The performance (measured in thousands of transactions per minute) and the price-performance
(measured in transactions per minute per $1000) are shown for six of the highest-performing systems using
TPC-C as the benchmark. Interestingly, IBM occupies three of these six positions, with different hardware platforms
(a cluster of Pentium IIIs, a Power III–based multiprocessor, and an AS 400–based multiprocessor.

Figure 1.23 Price-performance (plotted as transactions per minute per $1000 of system cost) and overall perfor-
mance (plotted as thousands of transactions per minute).

Transactions per
minute (thousands)

Transactions per
minute per $1000

0

600

700

500

400

300

200

100

IBM
xSeries
370 c/s

Compaq
AlphaServer

GS 320

Fujitsu
PRIMEPOWER

20000

IBM pSeries
680 7017-

S85

HP 9000
Enterprise

Server

IBM iSeries
400 840-

2420

0

50

45

40

35

30

25

20

15

10

5

Performance (transactions per minute)

Price-performance (TPM per $1000)

Transactions per
minute per $1000

Transactions per
minute (thouands)

0

180

160

140

120

100

80

60

40

20

Dell
PowerEdge

6400

IBM
xSeries
250 c/s

Compaq
Proliant
ML570
6/700 2

HP
NetServer LH

6000

NEC
Express

5800/180

HP 9000/
L2000

0

60

50

40

30

20

10

Price-performance (TPM per $1000)

Performance (transactions per minute)

54 � Chapter One Fundamentals of Computer Design

can be critical in determining system cost. For example, whether or not the mem-
ory controller and I/O control are integrated into the chip affects both power and
cost of the system. As we said earlier, power is often the critical constraint in
embedded systems, and we focus on the relationship between performance and
power in the next section.

Figure 1.24 shows the characteristics of the five processors whose price and
price-performance we examine. These processors span a wide range of cost,
power, and performance and thus are used in very different applications. The
high-end processors, such as the PowerPC 650 and AMD Elan, are used in appli-
cations such as network switches and possibly high-end laptops. The NEC VR
5432 series is a newer version of the VR 5400 series, which is one of the most
heavily used processors in color laser printers. In contrast, the NEC VR 4122 is a
low-end, low-power device used primarily in PDAs; in addition to the core com-
puting functions, the 4122 provides a number of system functions, reducing the
cost of the overall system.

Figure 1.25 shows the relative performance of these five processors on three
of the five EEMBC benchmark suites. The summary number for each benchmark
suite is proportional to the geometric mean of the individual performance mea-
sures for each benchmark in the suite (measured as iterations per second). The
clock rate differences explain between 33% and 75% of the performance differ-
ences. For machines with similar organization (such as the AMD Elan SC520 and
the NEC VR 4122), the clock rate is the primary factor in determining perfor-
mance. For machines with widely differing cache structures (such as the presence

Processor
Instruction

set

Processor
clock rate

(MHz)

Cache
instruction/data

on-chip
secondary cache

Processor
organization

Typical
power
(mW) Price

AMD Elan SC520 x86 133 16K/16K Pipelined:
single issue

1600 $38

AMD K6-2E+ x86 500 32K/32K
128K

Pipelined:
3+ issues/clock

9600 $78

IBM PowerPC 750CX PowerPC 500 32K/32K
128K

Pipelined:
4 issues/clock

6000 $94

NEC VR 5432 MIPS64 167 32K/32K Pipelined:
2 issues/clock

2088 $25

NEC VR 4122 MIPS64 180 32K/16K Pipelined:
single issue

700 $33

Figure 1.24 Five different embedded processors spanning a range of performance (more than a factor of 10, as
we will see) and a wide range in price (roughly a factor of 4 and probably 50% higher than that if total system
cost is considered). The price does not include interface and support chips, which could significantly increase the
deployed system cost. Likewise, the power indicated includes only the processor’s typical power consumption (in
milliwatts). These processors also differ widely in terms of execution capability, from a maximum of four instructions
per clock to one! All the processors except the NEC VR 4122 include a hardware floating-point unit.

1.7 Putting It All Together: Performance and Price-Performance � 55

or absence of a secondary cache) or different pipelines, clock rate explains less of
the performance difference.

Figure 1.26 shows the price-performance of these processors, where price is
measured only by the processor cost. Here, the wide range in price narrows the
performance differences, making the slower processors more cost-effective. If
our cost analysis also included the system support chips, the differences would
narrow even further, probably boosting the VR 5432 to the top in price-
performance and making the VR 4122 at least competitive with the high-end IBM
and AMD chips.

Figure 1.25 Relative performance of five different embedded processors for three
of the five EEMBC benchmark suites. The performance is scaled relative to the AMD
Elan SC520, so that the scores across the suites have a narrower range.

Figure 1.26 Relative price-performance of five different embedded processors for
three of the five EEMBC benchmark suites, using only the price of the processor.

Performance
relative to AMD
Elan SC520

0

14.0

12.0

10.0

8.0

6.0

4.0

2.0

Automotive

AMD ElanSC520
AMD K6-2E+
IBM PowerPC 750CX
NEC VR 5432
NEC VR 4122

Office Telecomm

Relative
performance/price

0

14.0

16.0

12.0

10.0

8.0

6.0

4.0

2.0

Automotive

AMD ElanSC520
AMD K6-2E+
IBM PowerPC 750CX
NEC VR 5432
NEC VR 4122

Office Telecomm

56 � Chapter One Fundamentals of Computer Design

Throughout the chapters of this book, you will find sections entitled “Another
View.” These sections emphasize the way in which different segments of the
computing market may solve a problem. For example, if the “Putting It All
Together” section emphasizes the memory system for a desktop microprocessor,
the “Another View” section may emphasize the memory system of an embedded
application or a server. In this first “Another View” section, we look at the issue
of power consumption in embedded processors.

As mentioned several times in this chapter, cost and power are often at least
as important as performance in the embedded market. In addition to the cost of
the processor module (which includes any required interface chips), memory is
often the next most costly part of an embedded system. Recall that, unlike a desk-
top or server system, most embedded systems do not have secondary storage;
instead, the entire application must reside in either FLASH or DRAM (as
described in Chapter 5). Because many embedded systems, such as PDAs and
cell phones, are constrained by both cost and physical size, the amount of mem-
ory needed for the application is critical. Likewise, power is often a determining
factor in choosing a processor, especially for battery-powered systems.

As we saw in Figure 1.24, the power for the five embedded processors we
examined varies by more than a factor of 10. Clearly, the high-performance AMD
K6, with a typical power consumption of 9.3 W, cannot be used in environments
where power or heat dissipation are critical. Figure 1.27 shows the relative per-
formance per watt of typical operating power. Compare this figure to Figure 1.25,
which plots raw performance, and notice how different the results are. The NEC
VR 4122 has a clear advantage in performance per watt, but is the second lowest

Figure 1.27 Relative performance per watt for the five embedded processors. The
power is measured as typical operating power for the processor and does not include
any interface chips.

1.8 Another View: Power Consumption and Efficiency
as the Metric

Relative performance per watt

0

3.5

4.0

3.0

2.5

2.0

1.5

1.0

0.5

Automotive

AMD ElanSC520
AMD K6-2E+
IBM PowerPC 750CX
NEC VR 5432
NEC VR 4122

Office Telecomm

1.9 Fallacies and Pitfalls � 57

performing processor! From the viewpoint of power consumption, the NEC VR
4122, which was designed for battery-based systems, is the big winner. The IBM
PowerPC displays efficient use of power to achieve its high performance,
although at 6 W typical, it is probably not suitable for most battery-based devices.

The purpose of this section, which will be found in every chapter, is to explain
some commonly held misbeliefs or misconceptions that you should avoid. We
call such misbeliefs fallacies. When discussing a fallacy, we try to give a counter-
example. We also discuss pitfalls—easily made mistakes. Often pitfalls are gen-
eralizations of principles that are true in a limited context. The purpose of these
sections is to help you avoid making these errors in machines that you design.

Fallacy The relative performance of two processors with the same instruction set architec-
ture (ISA) can be judged by clock rate or by the performance of a single benchmark
suite.

As processors have become faster and more sophisticated, processor performance
in one application area can diverge from that in another area. Sometimes the
instruction set architecture is responsible for this, but increasingly the pipeline
structure and memory system are responsible. This also means that clock rate is
not a good metric, even if the instruction sets are identical. Figure 1.28 shows the
performance of a 1.7 GHz Pentium 4 relative to a 1 GHz Pentium III. The figure

Figure 1.28 A comparison of the performance of the Pentium 4 (P4) relative to the
Pentium III (P3) on five different sets of benchmark suites. The bars show the relative
performance of a 1.7 GHz P4 versus a 1 GHz P3. The thick horizontal line at 1.7 shows
how much faster a Pentium 4 at 1.7 GHz would be than a 1 GHz Pentium III assuming
performance scaled linearly with clock rate. Of course, this line represents an idealized
approximation to how fast a P3 would run. The first two sets of bars are the SPEC inte-
ger and floating-point suites. The third set of bars represents three multimedia bench-
marks. The fourth set represents a pair of benchmarks based on the game Quake, and
the final benchmark is the composite Webmark score, a PC-based Web benchmark.

1.9 Fallacies and Pitfalls

Relative performance

0.00

0.40

0.80

1.80

1.60

1.40

1.20

1.00

0.60

0.20

SPECbase
CINT2000

SPECbase
CFP2000

Multimedia Game
benchmark

Web
benchmark

58 � Chapter One Fundamentals of Computer Design

also shows the performance of a hypothetical 1.7 GHz Pentium III assuming lin-
ear scaling of performance based on the clock rate. In all cases except the SPEC
floating-point suite, the Pentium 4 delivers less performance per MHz than the
Pentium III. As mentioned earlier, instruction set enhancements (the SSE2 exten-
sions), which significantly boost floating-point execution rates, are probably
responsible for the better performance of the Pentium 4 for these floating-point
benchmarks.

Performance within a single processor implementation family (such as Pen-
tium III) usually scales slower than clock speed because of the increased relative
cost of stalls in the memory system. Across generations (such as the Pentium 4
and Pentium III) enhancements to the basic implementation usually yield perfor-
mance that is somewhat better than what would be derived from just clock rate
scaling. As Figure 1.28 shows, the Pentium 4 is usually slower than the Pentium
III when performance is adjusted by linearly scaling the clock rate. This may
partly derive from the focus on high clock rate as a primary design goal. We dis-
cuss both the differences between the Pentium III and Pentium 4 further in Chap-
ter 3 as well as why the performance does not scale as fast as the clock rate does.

Fallacy Benchmarks remain valid indefinitely.

Several factors influence the usefulness of a benchmark as a predictor of real per-
formance, and some of these may change over time. A big factor influencing the
usefulness of a benchmark is the ability of the benchmark to resist “cracking,”
also known as benchmark engineering or “benchmarksmanship.” Once a bench-
mark becomes standardized and popular, there is tremendous pressure to improve
performance by targeted optimizations or by aggressive interpretation of the rules
for running the benchmark. Small kernels or programs that spend their time in a
very small number of lines of code are particularly vulnerable.

 For example, despite the best intentions, the initial SPEC89 benchmark suite
included a small kernel, called matrix300, which consisted of eight different 300
× 300 matrix multiplications. In this kernel, 99% of the execution time was in a
single line (see SPEC [1989]). Optimization of this inner loop by the compiler
(using an idea called blocking, discussed in Chapter 5) for the IBM Powerstation
550 resulted in performance improvement by a factor of more than 9 over an ear-
lier version of the compiler! This benchmark tested compiler performance and
was not, of course, a good indication of overall performance, nor of this particu-
lar optimization.

Even after the elimination of this benchmark, vendors found methods to tune
the performance of individual benchmarks by the use of different compilers or
preprocessors, as well as benchmark-specific flags. Although the baseline perfor-
mance measurements require the use of one set of flags for all benchmarks, the
tuned or optimized performance does not. In fact, benchmark-specific flags are
allowed, even if they are illegal in general and could lead to incorrect compilation!

Allowing benchmark and even input-specific flags has led to long lists of
options, as Figure 1.29 shows. This list of options, which is not significantly dif-

1.9 Fallacies and Pitfalls � 59

ferent from the option lists used by other vendors, is used to obtain the peak per-
formance for the Compaq AlphaServer DS20E Model 6/667. The list makes it
clear why the baseline measurements were needed. The performance difference
between the baseline and tuned numbers can be substantial. For the SPEC
CFP2000 benchmarks on the AlphaServer DS20E Model 6/667, the overall per-
formance (which by SPEC CPU2000 rules is summarized by geometric mean) is
1.12 times higher for the peak numbers. As compiler technology improves, a sys-
tem tends to achieve closer to peak performance using the base flags. Similarly,
as the benchmarks improve in quality, they become less susceptible to highly
application-specific optimizations. Thus, the gap between peak and base, which
in early times was often 20%, has narrowed.

Ongoing improvements in technology can also change what a benchmark
measures. Consider the benchmark gcc, considered one of the most realistic and
challenging of the SPEC92 benchmarks. Its performance is a combination of
CPU time and real system time. Since the input remains fixed and real system
time is limited by factors, including disk access time, that improve slowly, an
increasing amount of the run time is system time rather than CPU time. This may
be appropriate. On the other hand, it may be appropriate to change the input over
time, reflecting the desire to compile larger programs. In fact, the SPEC92 input
was changed to include four copies of each input file used in SPEC89; although

Peak: -v -g3 -arch ev6 -non_shared ONESTEP plus:

168.wupwise: f77 -fast -O4 -pipeline -unroll 2

171.swim: f90 -fast -O5 -transform_loops

172.mgrid: kf77 -O5 -transform_loops -tune ev6 -unroll 8

173.applu: f77 -fast -O5 -transform_loops -unroll 14

177.mesa: cc -fast -O4

178.galgel: kf90 -O4 -unroll 2 -ldxml RM_SOURCES = lapak.f90

179.art: kcc -fast -O4 -ckapargs='-arl=4 -ur=4' -unroll 10

183.equake: kcc -fast -ckapargs='-arl=4' -xtaso_short

187.facerec: f90 -fast -O4

188.ammp: cc -fast -O4 -xtaso_short

189.lucas: kf90 -fast -O5 -fkapargs='-ur=1' -unroll 1

191.fma3d: kf90 -O4

200.sixtrack: f90 -fast -O5 -transform_loops

301.apsi: kf90 -O5 -transform_loops -unroll 8 -fkapargs='-ur=1'

Figure 1.29 The tuning parameters for the SPEC CFP2000 report on an AlphaServer
DS20E Model 6/667. This is the portion of the SPEC report for the tuned performance
corresponding to that in Figure 1.14. These parameters describe the compiler options
(four different compilers are used). Each line shows the option used for one of the SPEC
CFP2000 benchmarks. Data from www.spec.org/osg/cpu2000/results/res1999q4/cpu2000-
19991130-00012.html.

60 � Chapter One Fundamentals of Computer Design

this increases run time, it may or may not reflect the way compilers are actually
being used.

Over a long period of time, these changes may make even a well-chosen
benchmark obsolete. For example, more than half the benchmarks added to the
1992 and 1995 SPEC CPU benchmark release were dropped from the next gener-
ation of the suite! To show how dramatically benchmarks must adapt over time,
we summarize the status of the integer and FP benchmarks from SPEC89, -92,
and -95 in Figure 1.30.

Pitfall Comparing hand-coded assembly and compiler-generated, high-level language
performance.

In most applications of computers, hand-coding is simply not tenable. A combi-
nation of the high cost of software development and maintenance together with
time-to-market pressures have made it impossible for many applications to con-
sider assembly language. In parts of the embedded market, however, several fac-
tors have continued to encourage limited use of hand-coding, at least of key
loops. The most important factors favoring this tendency are the importance of a
few small loops to overall performance (particularly real-time performance) in
some embedded applications, and the inclusion of instructions that can signifi-
cantly boost performance of certain types of computations, but that compilers can
not effectively use.

When performance is measured either by kernels or by applications that
spend most of their time in a small number of loops, hand-coding of the critical
parts of the benchmark can lead to large performance gains. In such instances, the
performance difference between the hand-coded and machine-generated versions
of a benchmark can be very large, as shown for two different machines in Figure
1.31. Both designers and users must be aware of this potentially large difference
and not extrapolate performance for compiler-generated code from hand-coded
benchmarks.

Fallacy Peak performance tracks observed performance.

The only universally true definition of peak performance is “the performance
level a machine is guaranteed not to exceed.” The gap between peak performance
and observed performance is typically a factor of 10 or more in supercomputers.
(See Appendix G for an explanation.) Since the gap is so large and can vary sig-
nificantly by benchmark, peak performance is not useful in predicting observed
performance unless the workload consists of small programs that normally oper-
ate close to the peak.

As an example of this fallacy, a small code segment using long vectors ran on
the Hitachi S810/20 in 1.3 seconds and on the Cray X-MP in 2.6 seconds.
Although this suggests the S810 is two times faster than the X-MP, the X-MP
runs a program with more typical vector lengths two times faster than the S810.
These data are shown in Figure 1.32.

1.9 Fallacies and Pitfalls � 61

Benchmark name Integer or FP SPEC89 SPEC92 SPEC95 SPEC2000

gcc integer adopted modified modified modified

espresso integer adopted modified dropped

li integer adopted modified modified dropped

eqntott integer adopted dropped

spice FP adopted modified dropped

doduc FP adopted dropped

nasa7 FP adopted dropped

fpppp FP adopted modified dropped

matrix300 FP adopted dropped

tomcatv FP adopted modified dropped

compress integer adopted modified dropped

sc integer adopted dropped

mdljdp2 FP adopted dropped

wave5 FP adopted modified dropped

ora FP adopted dropped

mdljsp2 FP adopted dropped

alvinn FP adopted dropped

ear FP adopted dropped

swm256 (aka swim) FP adopted modified modified

su2cor FP adopted modified dropped

hydro2d FP adopted modified dropped

go integer adopted dropped

m88ksim integer adopted dropped

ijpeg integer adopted dropped

perl integer adopted modified

vortex integer adopted modified

mgrid FP adopted modified

applu FP adopted dropped

apsi FP adopted modified

turb3d FP adopted dropped

Figure 1.30 The evolution of the SPEC benchmarks over time showing when benchmarks were adopted, modi-
fied, and dropped. All the programs in the 89, 92, and 95 releases are shown. “Modified” indicates that either the
input or the size of the benchmark was changed, usually to increase its running time and avoid perturbation in mea-
surement or domination of the execution time by some factor other than CPU time.

62 � Chapter One Fundamentals of Computer Design

Fallacy The best design for a computer is the one that optimizes the primary objective
without considering implementation.

Although in a perfect world where implementation complexity and implementa-
tion time could be ignored, this might be true, design complexity is an important
factor. Complex designs take longer to complete, prolonging time to market.
Given the rapidly improving performance of computers, longer design time
means that a design will be less competitive. The architect must be constantly
aware of the impact of his design choices on the design time for both hardware
and software. The many postponements of the availability of the Itanium proces-
sor (roughly a two-year delay from the initial target date) should serve as a topi-
cal reminder of the risks of introducing both a new architecture and a complex
design. With processor performance increasing by just over 50% per year, each
week delay translates to a 1% loss in relative performance!

Pitfall Neglecting the cost of software in either evaluating a system or examining cost-
performance.

For many years, hardware was so expensive that it clearly dominated the cost of
software, but this is no longer true. Software costs in 2001 could have been a
large fraction of both the purchase and operational costs of a system. For exam-

Machine
EEMBC
benchmark set

Compiler-generated
performance

Hand-coded
performance

Ratio hand/
compiler

Trimedia 1300 @166 MHz Consumer 23.3 110.0 4.7

BOPS Manta @ 136 MHz Telecomm 2.6 225.8 86.8

TI TMS320C6203 @ 300 MHz Telecomm 6.8 68.5 10.1

Figure 1.31 The performance of three embedded processors on C and hand-coded versions of portions of the
EEMBC benchmark suite. In the case of the BOPS and TI processors, they also provide versions that are compiled but
where the C is altered initially to improve performance and code generation; such versions can achieve most of the
benefit from hand optimization at least for these machines and these benchmarks.

Measurement Cray X-MP Hitachi S810/20 Performance

A(i) = B(i) * C(i) + D(i) * E(i)
(vector length 1000 done 100,000 times)

2.6 secs 1.3 secs Hitachi two times faster

Vectorized FFT
(vector lengths 64, 32, . . . , 2)

3.9 secs 7.7 secs Cray two times faster

Figure 1.32 Measurements of peak performance and actual performance for the Hitachi S810/20 and the Cray
X-MP. Note that the gap between peak and observed performance is large and can vary across benchmarks. Data
from pages 18–20 of Lubeck, Moore, and Mendez [1985]. Also see “Fallacies and Pitfalls” in Appendix G.

1.9 Fallacies and Pitfalls � 63

ple, for a medium-size database OLTP server, Microsoft OS software might run
about $2000, while the Oracle software would run between $6000 and $9000 for
a four-year, one-processor license. Assuming a four-year software lifetime means
a total software cost for these two major components of between $8000 and
$11,000. A midrange Dell server with 512 MB of memory, Pentium III at 1 GHz,
and between 20 and 100 GB of disk would cost roughly the same amount as these
two major software components—meaning that software costs are roughly 50%
of the total system cost!

Alternatively, consider a professional desktop system, which can be pur-
chased with 1 GHz Pentium III, 128 MB DRAM, 20 GB disk, and a 19-inch
monitor for just under $1000. The software costs of a Windows OS and Office
2000 are about $300 if bundled with the system and about double that if pur-
chased separately, so the software costs are somewhere between 23% and 38% of
the total cost!

Pitfall Falling prey to Amdahl’s Law.

Virtually every practicing computer architect knows Amdahl’s Law. Despite this,
we almost all occasionally fall into the trap of expending tremendous effort opti-
mizing some aspect of a system before we measure its usage. Only when the
overall speedup is unrewarding do we recall that we should have measured the
usage of that feature before we spent so much effort enhancing it!

Fallacy Synthetic benchmarks predict performance for real programs.

This fallacy appeared in the first edition of this book, published in 1990. With the
arrival and dominance of organizations such as SPEC and TPC, we thought per-
haps the computer industry had learned a lesson and reformed its faulty practices,
but the emerging embedded market has embraced Dhrystone as its most quoted
benchmark! Hence, this fallacy survives.

The best known examples of synthetic benchmarks are Whetstone and Dhry-
stone. These are not real programs and, as such, may not reflect program behavior
for factors not measured. Compiler and hardware optimizations can artificially
inflate performance of these benchmarks but not of real programs. The other side
of the coin is that because these benchmarks are not natural programs, they don’t
reward optimizations of behaviors that occur in real programs. Here are some
examples:

� Optimizing compilers can discard 25% of the Dhrystone code; examples
include loops that are only executed once, making the loop overhead instruc-
tions unnecessary. To address these problems the authors of the benchmark
“require” both optimized and unoptimized code to be reported. In addition,
they “forbid” the practice of inline-procedure expansion optimization, since
Dhrystone’s simple procedure structure allows elimination of all procedure
calls at almost no increase in code size.

64 � Chapter One Fundamentals of Computer Design

� Most Whetstone floating-point loops execute small numbers of times or
include calls inside the loop. These characteristics are different from many
real programs. As a result Whetstone underrewards many loop optimizations
and gains little from techniques such as multiple issue (Chapter 3) and vector-
ization (Appendix G).

� Compilers can optimize a key piece of the Whetstone loop by noting the rela-
tionship between square root and exponential, even though this is very
unlikely to occur in real programs. For example, one key loop contains the
following FORTRAN code:

X = SQRT(EXP(ALOG(X)/T1))

It could be compiled as if it were

X = EXP(ALOG(X)/(2×T1))
since

SQRT(EXP(X)) = = EXP(X/2)

It would be surprising if such optimizations were ever invoked except in this
synthetic benchmark. (Yet one reviewer of this book found several compilers
that performed this optimization!) This single change converts all calls to the
square root function in Whetstone into multiplies by 2, surely improving per-
formance—if Whetstone is your measure.

Fallacy MIPS is an accurate measure for comparing performance among computers.

This fallacy also appeared in the first edition of this book, published in 1990. We
initially thought it could be retired, but, alas, the embedded market not only uses
Dhrystone as the benchmark of choice, but reports performance as “Dhrystone
MIPS,” a measure that this fallacy will show is problematic.

One alternative to time as the metric is MIPS, or million instructions per sec-
ond. For a given program, MIPS is simply

MIPS = =

Some find this rightmost form convenient since clock rate is fixed for a machine
and CPI is usually a small number, unlike instruction count or execution time.
Relating MIPS to time,

Execution time =

Since MIPS is a rate of operations per unit time, performance can be specified as
the inverse of execution time, with faster machines having a higher MIPS rating.

The good news about MIPS is that it is easy to understand, especially by a
customer, and faster machines means bigger MIPS, which matches intuition. The
problem with using MIPS as a measure for comparison is threefold:

e
X2 eX 2/=

Instruction count

Execution time × 106

Clock rate

CPI × 106

Instruction count

MIPS × 106

1.10 Concluding Remarks � 65

� MIPS is dependent on the instruction set, making it difficult to compare MIPS
of computers with different instruction sets.

� MIPS varies between programs on the same computer.

� Most importantly, MIPS can vary inversely to performance!

The classic example of the last case is the MIPS rating of a machine with optional
floating-point hardware. Since it generally takes more clock cycles per floating-
point instruction than per integer instruction, floating-point programs using the
optional hardware instead of software floating-point routines take less time but
have a lower MIPS rating. Software floating point executes simpler instructions,
resulting in a higher MIPS rating, but it executes so many more that overall exe-
cution time is longer.

MIPS is sometimes used by a single vendor (e.g., IBM) within a single set of
machines designed for a given class of applications. In such cases, the use of
MIPS is less harmful since relative differences among MIPS ratings of machines
with the same architecture and the same applications are more likely to track rel-
ative performance differences.

To try to avoid the worst difficulties of using MIPS as a performance mea-
sure, computer designers began using relative MIPS, which we discuss in detail
on page 72, and this is what the embedded market reports for Dhrystone.
Although less harmful than an actual MIPS measurement, relative MIPS have
their shortcomings (e.g., they are not really MIPS!), especially when measured
using Dhrystone!

This chapter has introduced a number of concepts that we will expand upon as we
go through this book. The major ideas in instruction set architecture and the alter-
natives available will be the primary subjects of Chapter 2. Not only will we see
the functional alternatives, we will also examine quantitative data that enable us
to understand the trade-offs. The quantitative principle, Make the common case
fast, will be a guiding light in this next chapter, and the CPU performance equa-
tion will be our major tool for examining instruction set alternatives. Chapter 2
concludes an examination of how instruction sets are used by programs.

In Chapter 2, we will include a section, “Crosscutting Issues,” that specifi-
cally addresses interactions between topics addressed in different chapters. In
that section within Chapter 2, we focus on the interactions between compilers and
instruction set design. This “Crosscutting Issues” section will appear in all future
chapters.

In Chapters 3 and 4 we turn our attention to instruction-level parallelism
(ILP), of which pipelining is the simplest and most common form. Exploiting
ILP is one of the most important techniques for building high-speed uniproces-
sors. The presence of two chapters reflects the fact that there are two rather differ-
ent approaches to exploiting ILP. Chapter 3 begins with an extensive discussion

1.10 Concluding Remarks

66 � Chapter One Fundamentals of Computer Design

of basic concepts that will prepare you not only for the wide range of ideas exam-
ined in both chapters, but also to understand and analyze new techniques that will
be introduced in the coming years. Chapter 3 uses examples that span about 35
years, drawing from one of the first modern supercomputers (IBM 360/91) to the
fastest processors in the market in 2001. It emphasizes what is called the dynamic
or run time approach to exploiting ILP. Chapter 4 focuses on compile time
approaches to exploiting ILP. These approaches were heavily used in the early
1990s and return again with the introduction of the Intel Itanium. Appendix A is a
version of an introductory chapter on pipelining from the 1995 second edition of
this text. For readers without much experience and background in pipelining, that
appendix is a useful bridge between the basic topics explored in this chapter
(which we expect to be review for many readers, including those of our more
introductory text, Computer Organization and Design: The Hardware/Software
Interface) and the advanced topics in Chapter 3.
 In Chapter 5 we turn to the all-important area of memory system design. We
will examine a wide range of techniques that conspire to make memory look
infinitely large while still being as fast as possible. As in Chapters 3 and 4, we
will see that hardware-software cooperation has become a key to high-
performance memory systems, just as it has to high-performance pipelines.

Chapter 6 focuses on the issue of achieving higher performance through the
use of multiple processors, or multiprocessors. Instead of using parallelism to
overlap individual instructions, multiprocessing uses parallelism to allow multi-
ple instruction streams to be executed simultaneously on different processors.
Our focus is on the dominant form of multiprocessors, shared-memory multipro-
cessors, though we introduce other types as well and discuss the broad issues that
arise in any multiprocessor. Here again, we explore a variety of techniques,
focusing on the important ideas first introduced in the 1980s and 1990s.

In Chapters 7 and 8, we move away from a CPU-centric view and discuss
issues in storage systems and interconnect. We apply a similar quantitative
approach, but one based on observations of system behavior and using an end-to-
end approach to performance analysis. Chapter 7 addresses the important issue of
how to efficiently store and retrieve data using primarily lower-cost magnetic
storage technologies. As we saw earlier, such technologies offer better cost per bit
by a factor of 50–100 over DRAM. Magnetic storage is likely to remain advanta-
geous wherever cost or nonvolatility (it keeps the information after the power is
turned off) are important. In Chapter 7, our focus is on examining the perfor-
mance of disk storage systems for typical I/O-intensive workloads, like the OLTP
benchmarks we saw in this chapter. We extensively explore the idea of RAID-
based systems, which use many small disks, arranged in a redundant fashion, to
achieve both high performance and high availability. Chapter 8 discusses the pri-
mary interconnection technology used for I/O devices. This chapter explores the
topic of system interconnect more broadly, including wide area and system area
networks used to allow computers to communicate. Chapter 8 also describes
clusters, which are growing in importance due to their suitability and efficiency
for database and Web server applications.

1.11 Historical Perspective and References � 67

If . . . history . . . teaches us anything, it is that man in his quest for knowledge and
progress, is determined and cannot be deterred.

John F. Kennedy
address at Rice University (1962)

A section on historical perspective closes each chapter in the text. This section
provides historical background on some of the key ideas presented in the chapter.
We may trace the development of an idea through a series of machines or
describe significant projects. If you’re interested in examining the initial develop-
ment of an idea or machine or interested in further reading, references are provided
at the end of the section. In this historical section, we discuss the early development
of digital computers and the development of performance measurement methodolo-
gies. The development of the key innovations in desktop, server, and embedded
processor architectures are discussed in historical sections in virtually every chapter
of the book.

The First General-Purpose Electronic Computers

J. Presper Eckert and John Mauchly at the Moore School of the University of
Pennsylvania built the world’s first fully operational electronic general-purpose
computer. This machine, called ENIAC (Electronic Numerical Integrator and
Calculator), was funded by the U.S. Army and became operational during World
War II, but it was not publicly disclosed until 1946. ENIAC was used for comput-
ing artillery firing tables. The machine was enormous—100 feet long, 81/2 feet
high, and several feet wide. Each of the 20 ten-digit registers was 2 feet long. In
total, there were 18,000 vacuum tubes.

Although the size was three orders of magnitude bigger than the size of the
average machines built today, it was more than five orders of magnitude slower,
with an add taking 200 microseconds. The ENIAC provided conditional jumps
and was programmable, which clearly distinguished it from earlier calculators.
Programming was done manually by plugging up cables and setting switches and
required from a half hour to a whole day. Data were provided on punched cards.
The ENIAC was limited primarily by a small amount of storage and tedious
programming.

In 1944, John von Neumann was attracted to the ENIAC project. The group
wanted to improve the way programs were entered and discussed storing
programs as numbers; von Neumann helped crystallize the ideas and wrote a
memo proposing a stored-program computer called EDVAC (Electronic Discrete
Variable Automatic Computer). Herman Goldstine distributed the memo and put
von Neumann’s name on it, much to the dismay of Eckert and Mauchly, whose
names were omitted. This memo has served as the basis for the commonly used
term von Neumann computer. Several early inventors in the computer field

1.11 Historical Perspective and References

68 � Chapter One Fundamentals of Computer Design

believe that this term gives too much credit to von Neumann, who conceptualized
and wrote up the ideas, and too little to the engineers, Eckert and Mauchly, who
worked on the machines. Like most historians, your authors (winners of the 2000
IEEE von Neumann Medal) believe that all three individuals played a key role in
developing the stored-program computer. Von Neumann’s role in writing up the
ideas, in generalizing them, and in thinking about the programming aspects was
critical in transferring the ideas to a wider audience.

In 1946, Maurice Wilkes of Cambridge University visited the Moore School
to attend the latter part of a series of lectures on developments in electronic com-
puters. When he returned to Cambridge, Wilkes decided to embark on a project to
build a stored-program computer named EDSAC (Electronic Delay Storage
Automatic Calculator). (The EDSAC used mercury delay lines for its memory;
hence the phrase “delay storage” in its name.) The EDSAC became operational in
1949 and was the world’s first full-scale, operational, stored-program computer
[Wilkes, Wheeler, and Gill 1951; Wilkes 1985, 1995]. (A small prototype called
the Mark I, which was built at the University of Manchester and ran in 1948,
might be called the first operational stored-program machine.) The EDSAC was
an accumulator-based architecture. This style of instruction set architecture
remained popular until the early 1970s. (Chapter 2 starts with a brief summary of
the EDSAC instruction set.)

In 1947, Eckert and Mauchly applied for a patent on electronic computers.
The dean of the Moore School, by demanding the patent be turned over to the
university, may have helped Eckert and Mauchly conclude they should leave.
Their departure crippled the EDVAC project, which did not become operational
until 1952.

Goldstine left to join von Neumann at the Institute for Advanced Study at
Princeton in 1946. Together with Arthur Burks, they issued a report based on the
1944 memo [Burks, Goldstine, and von Newmann 1946]. The paper led to the
IAS machine built by Julian Bigelow at Princeton’s Institute for Advanced Study.
It had a total of 1024 40-bit words and was roughly 10 times faster than ENIAC.
The group thought about uses for the machine, published a set of reports, and
encouraged visitors. These reports and visitors inspired the development of a
number of new computers, including the first IBM computer, the 701, which was
based on the IAS machine. The paper by Burks, Goldstine, and von Neumann
was incredible for the period. Reading it today, you would never guess this land-
mark paper was written more than 50 years ago, as most of the architectural con-
cepts seen in modern computers are discussed there (e.g., see the quote at the
beginning of Chapter 5).

In the same time period as ENIAC, Howard Aiken was designing an electro-
mechanical computer called the Mark-I at Harvard. The Mark-I was built by a
team of engineers from IBM. He followed the Mark-I by a relay machine, the
Mark-II, and a pair of vacuum tube machines, the Mark-III and Mark-IV. The
Mark-III and Mark-IV were built after the first stored-program machines.
Because they had separate memories for instructions and data, the machines were
regarded as reactionary by the advocates of stored-program computers. The term

1.11 Historical Perspective and References � 69

Harvard architecture was coined to describe this type of machine. Though clearly
different from the original sense, this term is used today to apply to machines
with a single main memory but with separate instruction and data caches.
 The Whirlwind project [Redmond and Smith 1980] began at MIT in 1947 and
was aimed at applications in real-time radar signal processing. Although it led to
several inventions, its overwhelming innovation was the creation of magnetic
core memory, the first reliable and inexpensive memory technology. Whirlwind
had 2048 16-bit words of magnetic core. Magnetic cores served as the main
memory technology for nearly 30 years.

Important Special-Purpose Machines

During the Second World War, there were major computing efforts in both Great
Britain and the United States focused on special-purpose code-breaking comput-
ers. The work in Great Britain was aimed at decrypting messages encoded with
the German Enigma coding machine. This work, which occurred at a location
called Bletchley Park, led to two important machines. The first, an electrome-
chanical machine, conceived of by Alan Turing, was called BOMB [see Good in
Metropolis, Howlett, and Rota 1980]. The second, much larger and electronic
machine, conceived and designed by Newman and Flowers, was called COLOS-
SUS [see Randall in Metropolis, Howlett, and Rota 1980]. These were highly
specialized cryptanalysis machines, which played a vital role in the war by pro-
viding the ability to read coded messages, especially those sent to U-boats. The
work at Bletchley Park was highly classified (indeed some of it is still classified),
and so its direct impact on the development of ENIAC, EDSAC, and other com-
puters is hard to trace, but it certainly had an indirect effect in advancing the tech-
nology and gaining understanding of the issues.

Similar work on special-purpose computers for cryptanalysis went on in the
United States. The most direct descendent of this effort was a company, Engi-
neering Research Associates (ERA) [see Thomash in Metropolis, Howlett, and
Rota 1980], which was founded after the war to attempt to commercialize on the
key ideas. ERA built several machines, which were sold to secret government
agencies, and was eventually purchased by Sperry-Rand, which had earlier pur-
chased the Eckert Mauchly Computer Corporation.

Another early set of machines that deserves credit was a group of special-
purpose machines built by Konrad Zuse in Germany in the late 1930s and early
1940s [see Bauer and Zuse in Metropolis, Howlett, and Rota 1980]. In addition to
producing an operating machine, Zuse was the first to implement floating point,
which von Neumann claimed was unnecessary! His early machines used a
mechanical store that was smaller than other electromechanical solutions of the
time. His last machine was electromechanical but, because of the war, was never
completed.

An important early contributor to the development of electronic computers
was John Atanasoff, who built a small-scale electronic computer in the early

70 � Chapter One Fundamentals of Computer Design

1940s [Atanasoff 1940]. His machine, designed at Iowa State University, was a
special-purpose computer (called the ABC—Atanasoff Berry Computer) that was
never completely operational. Mauchly briefly visited Atanasoff before he built
ENIAC, and several of Atanasoff’s ideas (e.g., using binary representation) likely
influenced Mauchly. The presence of the Atanasoff machine, together with delays
in filing the ENIAC patents (the work was classified, and patents could not be
filed until after the war) and the distribution of von Neumann’s EDVAC paper,
were used to break the Eckert-Mauchly patent [Larson 1973]. Though contro-
versy still rages over Atanasoff’s role, Eckert and Mauchly are usually given
credit for building the first working, general-purpose, electronic computer [Stern
1980]. Atanasoff, however, demonstrated several important innovations included
in later computers. Atanasoff deserves much credit for his work, and he might
fairly be given credit for the world’s first special-purpose electronic computer and
for possibly influencing Eckert and Mauchly.

Commercial Developments

In December 1947, Eckert and Mauchly formed Eckert-Mauchly Computer Cor-
poration. Their first machine, the BINAC, was built for Northrop and was shown
in August 1949. After some financial difficulties, the Eckert-Mauchly Computer
Corporation was acquired by Remington-Rand, later called Sperry-Rand. Sperry-
Rand merged the Eckert-Mauchly acquisition, ERA, and its tabulating business to
form a dedicated computer division, called UNIVAC. UNIVAC delivered its first
computer, the UNIVAC I, in June 1951. The UNIVAC I sold for $250,000 and
was the first successful commercial computer—48 systems were built! Today,
this early machine, along with many other fascinating pieces of computer lore,
can be seen at the Computer Museum in Mountain View, California. Other places
where early computing systems can be visited include the Deutsches Museum in
Munich and the Smithsonian in Washington, D.C., as well as numerous online
virtual museums.

IBM, which earlier had been in the punched card and office automation busi-
ness, didn’t start building computers until 1950. The first IBM computer, the IBM
701 based on von Neumann’s IAS machine, shipped in 1952 and eventually sold
19 units [see Hurd in Metropolis, Howlett, and Rota 1980]. In the early 1950s,
many people were pessimistic about the future of computers, believing that the
market and opportunities for these “highly specialized” machines were quite lim-
ited. Nonetheless, IBM quickly became the most successful computer company.
The focus on reliability and a customer- and market-driven strategy was key.
Although the 701 and 702 were modest successes, IBM’s follow-on machines,
the 650, 704, and 705 (delivered in 1954 and 1955) were significant successes,
each selling from 132 to 1800 computers.

Several books describing the early days of computing have been written by
the pioneers [Wilkes 1985, 1995; Goldstine 1972], as well as Metropolis,
Howlett, and Rota [1980], which is a collection of recollections by early pio-

1.11 Historical Perspective and References � 71

neers. There are numerous independent histories, often built around the people
involved [Slater 1987], as well as a journal, Annals of the History of Computing,
devoted to the history of computing.

The history of some of the computers invented after 1960 can be found in
Chapter 2 (the IBM 360, the DEC VAX, the Intel 80x86, and the early RISC
machines), Chapters 3 and 4 (the pipelined processors, including Stretch and the
CDC 6600), and Appendix G (vector processors including the TI ASC, CDC Star,
and Cray processors).

Development of Quantitative Performance Measures:
Successes and Failures

In the earliest days of computing, designers set performance goals—ENIAC was
to be 1000 times faster than the Harvard Mark-I, and the IBM Stretch (7030) was
to be 100 times faster than the fastest machine in existence. What wasn’t clear,
though, was how this performance was to be measured. In looking back over the
years, it is a consistent theme that each generation of computers obsoletes the
performance evaluation techniques of the prior generation.

The original measure of performance was time to perform an individual oper-
ation, such as addition. Since most instructions took the same execution time, the
timing of one gave insight into the others. As the execution times of instructions
in a machine became more diverse, however, the time for one operation was no
longer useful for comparisons. To take these differences into account, an instruc-
tion mix was calculated by measuring the relative frequency of instructions in a
computer across many programs. The Gibson mix [Gibson 1970] was an early
popular instruction mix. Multiplying the time for each instruction times its
weight in the mix gave the user the average instruction execution time. (If mea-
sured in clock cycles, average instruction execution time is the same as average
CPI.) Since instruction sets were similar, this was a more accurate comparison
than add times. From average instruction execution time, then, it was only a small
step to MIPS (as we have seen, the one is the inverse of the other). MIPS had the
virtue of being easy for the layperson to understand.

As CPUs became more sophisticated and relied on memory hierarchies and
pipelining, there was no longer a single execution time per instruction; MIPS
could not be calculated from the mix and the manual. The next step was bench-
marking using kernels and synthetic programs. Curnow and Wichmann [1976]
created the Whetstone synthetic program by measuring scientific programs writ-
ten in Algol 60. This program was converted to FORTRAN and was widely used
to characterize scientific program performance. An effort with similar goals to
Whetstone, the Livermore FORTRAN Kernels, was made by McMahon [1986]
and researchers at Lawrence Livermore Laboratory in an attempt to establish a
benchmark for supercomputers. These kernels, however, consisted of loops from
real programs.

72 � Chapter One Fundamentals of Computer Design

As it became clear that using MIPS to compare architectures with different
instruction sets would not work, a notion of relative MIPS was created. When the
VAX-11/780 was ready for announcement in 1977, DEC ran small benchmarks
that were also run on an IBM 370/158. IBM marketing referred to the 370/158 as
a 1 MIPS computer, and since the programs ran at the same speed, DEC market-
ing called the VAX-11/780 a 1 MIPS computer. Relative MIPS for a machine M
was defined based on some reference machine as

The popularity of the VAX-11/780 made it a popular reference machine for
relative MIPS, especially since relative MIPS for a 1 MIPS computer is easy to
calculate: If a machine was five times faster than the VAX-11/780, for that bench-
mark its rating would be 5 relative MIPS. The 1 MIPS rating was unquestioned
for four years, until Joel Emer of DEC measured the VAX-11/780 under a time-
sharing load. He found that the VAX-11/780 native MIPS rating was 0.5. Subse-
quent VAXes that run 3 native MIPS for some benchmarks were therefore called
6 MIPS machines because they run six times faster than the VAX-11/780. By the
early 1980s, the term MIPS was almost universally used to mean relative MIPS.

The 1970s and 1980s marked the growth of the supercomputer industry,
which was defined by high performance on floating-point-intensive programs.
Average instruction time and MIPS were clearly inappropriate metrics for this
industry, hence the invention of MFLOPS (millions of floating-point operations
per second), which effectively measured the inverse of execution time for a
benchmark. Unfortunately customers quickly forget the program used for the rat-
ing, and marketing groups decided to start quoting peak MFLOPS in the super-
computer performance wars.

SPEC (System Performance and Evaluation Cooperative) was founded in the
late 1980s to try to improve the state of benchmarking and make a more valid
basis for comparison. The group initially focused on workstations and servers in
the UNIX marketplace, and that remains the primary focus of these benchmarks
today. The first release of SPEC benchmarks, now called SPEC89, was a substan-
tial improvement in the use of more realistic benchmarks.

References

Amdahl, G. M. [1967]. “Validity of the single processor approach to achieving large scale
computing capabilities,” Proc. AFIPS 1967 Spring Joint Computer Conf. 30 (April),
Atlantic City, N.J., 483–485.

Atanasoff, J. V. [1940]. “Computing machine for the solution of large systems of linear
equations,” Internal Report, Iowa State University, Ames.

Bell, C. G. [1984]. “The mini and micro industries,” IEEE Computer 17:10 (October),
14–30.

Bell, C. G., J. C. Mudge, and J. E. McNamara [1978]. A DEC View of Computer Engi-
neering, Digital Press, Bedford, Mass.

MIPSM

PerformanceM

Performancereference
-- MIPSreference×=

1.11 Historical Perspective and References � 73

Burks, A. W., H. H. Goldstine, and J. von Neumann [1946]. “Preliminary discussion of
the logical design of an electronic computing instrument,” Report to the U.S. Army
Ordnance Department, p. 1; also appears in Papers of John von Neumann, W. Aspray
and A. Burks, eds., MIT Press, Cambridge, Mass., and Tomash Publishers, Los Ange-
les, Calif., 1987, 97–146.

Curnow, H. J., and B. A. Wichmann [1976]. “A synthetic benchmark,” The Computer J.,
19:1, 43–49.

Flemming, P. J., and J. J. Wallace [1986]. “How not to lie with statistics: The correct way
to summarize benchmarks results,” Comm. ACM 29:3 (March), 218–221.

Fuller, S. H., and W. E. Burr [1977]. “Measurement and evaluation of alternative
computer architectures,” Computer 10:10 (October), 24–35.

Gibson, J. C. [1970]. “The Gibson mix,” Rep. TR. 00.2043, IBM Systems Development
Division, Poughkeepsie, N.Y. (Research done in 1959.)

Goldstine, H. H. [1972]. The Computer: From Pascal to von Neumann, Princeton Univer-
sity Press, Princeton, N.J.

Jain, R. [1991]. The Art of Computer Systems Performance Analysis: Techniques for Ex-
perimental Design, Measurement, Simulation, and Modeling, Wiley, New York.

Larson, E. R. [1973]. “Findings of fact, conclusions of law, and order for judgment,” File
No. 4-67, Civ. 138, Honeywell v. Sperry-Rand and Illinois Scientific Development,
U.S. District Court for the State of Minnesota, Fourth Division (October 19).

Lubeck, O., J. Moore, and R. Mendez [1985]. “A benchmark comparison of three super-
computers: Fujitsu VP-200, Hitachi S810/20, and Cray X-MP/2,” Computer 18:12
(December), 10–24.

McMahon, F. M. [1986]. “The Livermore FORTRAN kernels: A computer test of numeri-
cal performance range,” Tech. Rep. UCRL-55745, Lawrence Livermore National
Laboratory, Univ. of California, Livermore (December).

Metropolis, N., J. Howlett, and G-C Rota, eds. [1980]. A History of Computing in the
Twentieth Century, Academic Press, New York.

Redmond, K. C., and T. M. Smith [1980]. Project Whirlwind—The History of a Pioneer
Computer, Digital Press, Boston.

Shurkin, J. [1984]. Engines of the Mind: A History of the Computer, W. W. Norton, New
York.

Slater, R. [1987]. Portraits in Silicon, MIT Press, Cambridge, Mass.
Smith, J. E. [1988]. “Characterizing computer performance with a single number,” Comm.

ACM 31:10 (October), 1202–1206.
SPEC [1989]. SPEC Benchmark Suite Release 1.0 (October 2).
SPEC [1994]. SPEC Newsletter (June).
Stern, N. [1980]. “Who invented the first electronic digital computer?” Annals of the His-

tory of Computing 2:4 (October), 375–376.
Touma, W. R. [1993]. The Dynamics of the Computer Industry: Modeling the Supply of

Workstations and Their Components, Kluwer Academic, Boston.
Weicker, R. P. [1984]. “Dhrystone: A synthetic systems programming benchmark,”

Comm. ACM 27:10 (October), 1013–1030.
Wilkes, M. V. [1985]. Memoirs of a Computer Pioneer, MIT Press, Cambridge, Mass.
Wilkes, M. V. [1995]. Computing Perspectives, Morgan Kaufmann, San Francisco.
Wilkes, M. V., D. J. Wheeler, and S. Gill [1951]. The Preparation of Programs for an

Electronic Digital Computer, Addison-Wesley, Cambridge, Mass.

74 � Chapter One Fundamentals of Computer Design

Each exercise has a difficulty rating in square brackets and a list of the chapter
sections it depends on in angle brackets. See the Preface for a description of the
difficulty scale. Solutions to the “starred” exercises appear in Appendix B.

1.1 [15/15/15/15] <1.3, 1.4, 7.2> Computer system designers must be alert to the
rapid change of computer technology. To see one example of how radically
change can affect design, consider the evolution of DRAM and magnetic disk
technologies since publication of the first edition of this text in 1990. At that time
DRAM density had been improving for 10 years at a rate of about 60% per year,
giving rise every third year to a new generation of DRAM chips with four times
more capacity than before. Magnetic disk data recording density had been
improving for 30 years at nearly 30% per year, doubling every three years.

a. [15] <1.3> The first edition posed a question much like this. Assume that cost
per megabyte for either type of storage is proportional to density, that 1990 is
the start of the 4M bit DRAM generation, and that in 1990 DRAM costs 20
times more per megabyte than disk. Using the well-established historic den-
sity improvement rates, create a table showing projected relative cost of each
DRAM generation and disk from 1990 for six generations. What conclusion
can be drawn about the future of disk drives in computer designs and about
the magnetic disk industry from this projection?

b. [15] <1.4, 7.2> The conclusion supported by the result from part (a) is far
from today’s reality. Shortly before 1990 the change from inductive heads to
thin film, and then magnetoresistive heads, allowed magnetic disk recording
density to begin a 60% annual improvement trend, matching DRAM. Since
about 1997, giant magnetoresistive effect heads have upped the rate to 100%
per year, and, available to the mass market in 2001, antiferromagnetically
coupled recording media should support or improve that rate for several
years. Using data from Figures 1.5 and 7.4, plot the actual ratio of DRAM to
disk price per unit of storage for each DRAM generation (3-year intervals)
starting in 1983. Compare your answer with part (a) by including those data
points on the graph. Assume that DRAM storage is built from the then-
available chip size with the lowest cost per bit and that disk cost is the median
cost for that year. Note that 1 GB = 1000 MB. Ignore the cost of any packag-
ing, support hardware, and control hardware needed to incorporate DRAM
and disk into a computer system.

c. [15] <1.3> Not only price, but disk physical volume and mass improve with
recording density. Today’s standard laptop computer disk drive bay is 10 cm
long and 7 cm wide. Assume that a 100 MB disk in 1990 occupied 500 cc
(cubic centimeters) and massed 1000 g (grams). If disk volume and mass had
improved only 30% per year since 1990, what would the height (neglect
mechanical constraints on disk drive shape) and mass of a 30 GB laptop com-
puter disk be today? For comparison, actual typical height and mass values
for 2001 are 1.25 cm and 100 g.

Exercises

Exercises � 75

d. [15] <1.3, 1.4> Increasing disk recording density expands the range of soft-
ware applications possible at a given computer price point. High-quality
desktop digital video editing capability is available in 2001 on a $1000 PC.
Five minutes of digital video consumes about 1 GB of storage, so the 20 GB
disk of the PC in Figure 1.9 provides reasonable capacity. If disk density had
improved only at 30% per year since 1990, but other PC component costs
shown in Figure 1.9 were unchanged and the ratio of retail price to compo-
nent cost given in Figure 1.10 was unaffected, approximately how much more
would a desktop video PC cost in 2001?

1.2 [20/10/10/10/15] <1.6> In this exercise, assume that we are considering enhanc-
ing a machine by adding vector hardware to it. When a computation is run in vec-
tor mode on the vector hardware, it is 10 times faster than the normal mode of
execution. We call the percentage of time that could be spent using vector mode
the percentage of vectorization.Vectors are discussed in Appendix G, but you
don’t need to know anything about how they work to answer this question!

a. [20] <1.6> Draw a graph that plots the speedup as a percentage of the compu-
tation performed in vector mode. Label the y-axis “Net speedup” and label
the x-axis “Percent vectorization.”

b. [10] <1.6> What percentage of vectorization is needed to achieve a speedup
of 2?

c. [10] <1.6> What percentage of the computation run time is spent in vector
mode if a speedup of 2 is achieved?

d. [10] <1.6> What percentage of vectorization is needed to achieve one-half the
maximum speedup attainable from using vector mode?

e. [15] <1.6> Suppose you have measured the percentage of vectorization for
programs to be 70%. The hardware design group says they can double the
speed of the vector hardware with a significant additional engineering invest-
ment. You wonder whether the compiler crew could increase the use of vector
mode as another approach to increasing performance. How much of an
increase in the percentage of vectorization (relative to current usage) would
you need to obtain the same performance gain as doubling vector hardware
speed? Which investment would you recommend?

1.3 [15/10] <1.6> Assume—as in the Amdahl’s Law example on page 41—that we
make an enhancement to a computer that improves some mode of execution by a
factor of 10. Enhanced mode is used 50% of the time, measured as a percentage
of the execution time when the enhanced mode is in use. Recall that Amdahl’s
Law depends on the fraction of the original, unenhanced execution time that
could make use of enhanced mode. Thus, we cannot directly use this 50% mea-
surement to compute speedup with Amdahl’s Law.

a. [15] <1.6> What is the speedup we have obtained from fast mode?

b. [10] <1.6> What percentage of the original execution time has been converted
to fast mode?

76 � Chapter One Fundamentals of Computer Design

✪ 1.4 [12/10/Discussion] <1.6> Amdahl’s Law implies that the ultimate goal of high-
performance computer system design should be an enhancement that offers arbi-
trarily large speedup for all of the task time. Perhaps surprisingly, this goal can be
approached quite closely with real computers and tasks. Section 3.5 describes how
some branch instructions can, with high likelihood, be executed in zero time with a
hardware enhancement called a branch-target buffer. Arbitrarily large speedup can
be achieved for complex computational tasks when more efficient algorithms are
developed. A classic example from the field of digital signal processing is the dis-
crete Fourier transform (DFT) and the more efficient fast Fourier transform (FFT).
How these two transforms work is not important here. All we need to know is that
they compute the same result, and with an input of n floating-point data values, a
DFT algorithm will execute approximately n2 floating-point instructions, while the
FFT algorithm will execute approximately n log2 n floating-point instructions.

a. [12] <1.6> Ignore instructions other than floating point. What is the speedup
gained by using the FFT instead of the DFT for an input of n = 2k floating-
point values in the range 8 ≤ n ≤ 1024 and also in the limit as n → ∞?

b. [10] <1.6> When n = 1024, what is the percentage reduction in the number of
executed floating-point instructions when using the FFT rather than the DFT?

c. [Discussion] <1.6> Despite the speedup achieved by processors with a
branch-target buffer, not only do processors without such a buffer remain in
production, new processor designs without this enhancement are still devel-
oped. Yet, once the FFT became known, the DFT was abandoned. Certainly
speedup is desirable. What reasons can you think of to explain this asymme-
try in use of a hardware and a software enhancement, and what does your
answer say about the economics of hardware and algorithm technologies?

1.5 [15] <1.6> Show that the problem statements in the examples on pages 42 and 44
describe identical situations and equivalent design alternatives.

✪ 1.6 [15] <1.9> Dhrystone is a well-known integer benchmark. Computer A is mea-
sured to perform DA executions of the Dhrystone benchmark per second, and to
achieve a millions of instructions per second rate of MIPSA while doing Dhry-
stone. Computer B is measured to perform DB executions of the Dhrystone
benchmark per second. What is the fallacy in calculating the MIPS rating of com-
puter B as MIPSB = MIPSA × (DB / DA)?

1.7 [15/15/8] <1.9> A certain benchmark contains 195,578 floating-point operations,
with the details shown in Figure 1.33.

The benchmark was run on an embedded processor after compilation with opti-
mization turned on. The embedded processor is based on a current RISC proces-
sor that includes floating-point function units, but the embedded processor does
not include floating point for reasons of cost, power consumption, and lack of
need for floating point by the target applications. The compiler allows floating-
point instructions to be calculated with the hardware units or using software rou-
tines, depending on compiler flags. The benchmark took 1.08 seconds on the

Exercises � 77

RISC processor and 13.6 seconds using software on its embedded version.
Assume that the CPI using the RISC processor was measured to be 10, while the
CPI of the embedded version of the processor was measured to be 6.

a. [15] <1.9> What is the total number of instructions executed for both runs?

b. [15] <1.9> What is the MIPS rating for both runs?

c. [8] <1.9> On the average, how many integer instructions does it take to per-
form a floating-point operation in software?

1.8 [15/10/15/15/15] <1.3, 1.4> This exercise estimates the complete packaged cost
of a microprocessor using the die cost equation and adding in packaging and test-
ing costs. We begin with a short description of testing cost and follow with a dis-
cussion of packaging issues.

Testing is the second term of the chip cost equation:

Cost of integrated circuit =

Testing costs are determined by three components:

Since bad dies are discarded, die yield is in the denominator in the equation—the
good must shoulder the costs of testing those that fail. (In practice, a bad die may
take less time to test, but this effect is small, since moving the probes on the die is
a mechanical process that takes a large fraction of the time.) Testing costs about
$50 to $500 per hour, depending on the tester needed. High-end designs with
many high-speed pins require the more expensive testers. For higher-end micro-
processors test time would run $300 to $500 per hour. Die tests take about 5 to 90
seconds on average, depending on the simplicity of the die and the provisions to
reduce testing time included in the chip.

The cost of a package depends on the material used, the number of pins, and the
die area. The cost of the material used in the package is in part determined by the

Operation Count

Add 82,014

Subtract 8,229

Multiply 73,220

Divide 21,399

Convert integer to FP 6,006

Compare 4,710

Total 195,578

Figure 1.33 Occurrences of floating-point operations.

Cost of die + Cost of testing die + Cost of packaging

Final test yield

Cost of testing die Cost of testing per hour Average die test time×
Die yield

--=

78 � Chapter One Fundamentals of Computer Design

ability to dissipate heat generated by the die. For example, a plastic quad flat
pack (PQFP) dissipating less than 1 W, with 208 or fewer pins, and containing a
die up to 1 cm on a side costs $2 in 2001. A ceramic pin grid array (PGA) can
handle 300 to 600 pins and a larger die with more power, but it costs $20 to $60.
In addition to the cost of the package itself is the cost of the labor to place a die in
the package and then bond the pads to the pins, which adds from a few cents to a
dollar or two to the cost. Some good dies are typically lost in the assembly pro-
cess, thereby further reducing yield. For simplicity we assume the final test yield
is 1.0; in practice it is at least 0.95. We also ignore the cost of the final packaged
test.

This exercise requires the information provided in Figure 1.34.

a. [15] <1.4> For each of the microprocessors in Figure 1.34, compute the num-
ber of good chips you would get per 20 cm wafer using the model on page 19.
Assume a defect density of 0.5 defect per cm2, a wafer yield of 95%, and α = 4.

b. [10] <1.4> For each microprocessor in Figure 1.34, compute the cost per pro-
jected good die before packaging and testing. Use the number of good dies
per wafer from part (a) of this exercise and the wafer cost from Figure 1.34.

c. [15] <1.3> Using the additional assumptions shown in Figure 1.35, compute
the cost per good, tested, and packaged part using the costs per good die from
part (b) of this exercise.

d. [15] <1.3> There are wide differences in defect densities between semicon-
ductor manufacturers. Find the costs for the largest processor in Figure 1.34
(total cost including packaging), assuming defect densities are 0.3 per cm2

and assuming that defect densities are 1.0 per cm2.

e. [15] <1.3> The parameter α depends on the complexity of the process. Addi-
tional metal levels result in increased complexity. For example, α might be
approximated by the number of interconnect levels. For the Digital 21064C
with six levels of interconnect, estimate the cost of working, packaged, and
tested die if α = 4 and if α = 6. Assume a defect density of 0.8 defects
per cm2.

Microprocessor
Die area

(mm2) Pins Technology
Estimated

wafer cost ($) Package

Alpha 21264C 115 524 CMOS, 0.18µ, 6M 4700 CLGA

Power3-II 163 1088 CMOS, 0.22µ, 6M 4000 SLC

Itanium 300 418 CMOS, 0.18µ, 6M 4900 PAC

MIPS R14000 204 527 CMOS, 0.25µ, 4M 3700 CPGA

UltraSPARC III 210 1368 CMOS, 0.15µ, 6M 5200 FC-LGA

Figure 1.34 Characteristics of microprocessors. About half of the pins are for power
and ground connections. The technology entry is the process type, line width, and
number of interconnect levels.

Exercises � 79

1.9 [20/20] <1.4> On page 20 the concluding discussion about the die cost model
claims that, for realistic die sizes and defect densities, die cost is better modeled
as a function of (roughly) the die area squared rather than to the fourth power.

a. [20] <1.4> Using the model and a spreadsheet, determine the cost of dies
ranging in area from 0.5 to 4 cm2 and assuming a defect density of 0.6 and α
= 4. Next, use a mathematical analysis tool for fitting polynomial curves to fit
the (die area, die cost) data pairs you computed in the spreadsheet. What is
the lowest degree polynomial that is a close fit to the data?

b. [20] <1.4> Suppose defect densities were much higher: say, 2 defects per
cm2. Now what is lowest degree polynomial that is a close fit?

✪ 1.10 [15/15/10] <1.5, 1.9> Assume the two programs in Figure 1.15 each execute 100
million floating-point operations during execution on each of the three machines.
If performance is expressed as a rate, then the average that tracks total execution
time is the harmonic mean,

where Ratei is a function of 1/ Timei, the execution time for the i th of n programs
in the workload.

a. [15] <1.5, 1.9> Calculate the MFLOPS rating of each program.

b. [15] <1.5, 1.9> Calculate the arithmetic, geometric, and harmonic means of
MFLOPS for each machine.

c. [10] <1.5, 1.9> Which of the three means matches the relative performance of
total execution time?

1.11 [12] <1.5> One reason people may incorrectly summarize rate data using an
arithmetic mean is that it always gives an answer greater than or equal to the geo-
metric mean. Show that for any two positive integers, a and b, the arithmetic

Package type Pin count
Package
cost ($)

Test time
(secs)

Test cost per
hour ($)

PAC < 500 20 30 400

SLC < 1100 20 20 420

Grid array (CLGA, CPGA,
or FC-LGA)

< 500 20 20 400

Grid array (CLGA, CPGA,
or FC-LGA)

< 1000 25 25 440

Grid array (CLGA, CPGA,
or FC-LGA)

< 1500 30 30 480

Figure 1.35 Package and test characteristics.

n

1
Ratei

i 1=

n

∑

80 � Chapter One Fundamentals of Computer Design

mean is always greater than or equal to the geometric mean. When are the two
equal?

1.12 [12] <1.5> For reasons similar to those in Exercise 1.11, some people use arith-
metic mean instead of harmonic mean (see the definition of harmonic mean in
Exercise 1.10). Show that for any two positive rates, r and s, the arithmetic mean
is always greater than or equal to the harmonic mean. When are the two equal?

✪ 1.13 [10/10/10/10] <1.5> Sometimes we have a set of computer performance mea-
surements that range from very slow to very fast execution. A single statistic,
such as a mean, may not capture a useful sense of the data set as a whole. For
example, the CPU pipeline and hard disk subsystem of a computer execute their
respective basic processing steps at speeds that differ by a factor of typically 107.
This is a speed difference in excess of that between a jet airliner in cruising flight
(~1000 kilometers per hour) and a snail gliding on the long, thin leaf of an aga-
panthus (perhaps 1 meter per hour). Let’s look at what happens when measure-
ments with such a large range are summarized by a single number.

a. [10] <1.5> What are the arithmetic means of two sets of benchmark measure-
ments, one with nine values of 107 and one value of 1 and the other set with
nine values of 1 and one value of 107? How do these means compare with the
data set medians? Which outlying data point affects the arithmetic mean
more, a large or a small value?

b. [10] <1.5> What are the harmonic means (see Exercise 1.10 for the definition
of harmonic mean) of the two sets of measurements specified in part (a)?
How do these means compare with the data set medians? Which outlying data
point affects the harmonic mean more, a large or a small value?

c. [10] <1.5> Which mean, arithmetic or harmonic, produces a statistic closest
to the median?

d. [10] <1.5> Repeat parts (a) and (b) for two sets of 10 benchmark measure-
ments with the outlying value only a factor of 2 larger or smaller. How repre-
sentative of the entire set do the arithmetic and harmonic mean statistics seem
for this narrow range of performance values?

1.14 [15/15] <1.5> A spreadsheet is useful for performing the computations of this
exercise. Some of the results from the SPEC2000 Web site (www.spec.org) are
shown in Figure 1.36. The reference time is the execution time for a particular
computer system chosen by SPEC as a performance reference for all other tested
systems. The base ratio is simply the run time for a benchmark divided into the
reference time for that benchmark. The SPECfp_base2000 statistic is computed
as the geometric mean of the base ratios. Let’s see how a weighted arithmetic
mean compares.

a. [15] <1.5> Calculate the weights for a workload so that running times on the
reference computer will be equal for each of the 14 benchmarks in Figure
1.36.

Exercises � 81

b. [15] <1.5> Using the weights computed in part (a) of this exercise, calculate
the weighted arithmetic means of the execution times of the 14 programs in
Figure 1.36.

1.15 [15/20/15] <1.5> “The only consistent and reliable measure of performance is the
execution time of real programs” [page 25].

a. [15] <1.5> For the execution time of a real program on a given computer sys-
tem to have a meaningful value, two conditions must be satisfied. One has to
do with the conditions within the computer system at the time of measure-
ment, and the other has to do with the measured program itself. What are the
conditions?

b. [20] <1.5> Programs such as operating systems, Web servers, device drivers,
and TCP/IP stacks are intended to either not terminate or terminate only upon

Base ratio

SPEC CFP2000
program name Reference time

Compaq AlphaServer
ES40 Model 6/667

IBM eServer
pSeries 640 Intel VC820

168.wupwise 1600 458 307 393

171.swim 3100 1079 227 406

172.mgrid 1800 525 284 246

173.applu 2100 386 311 244

177.mesa 1400 502 273 535

178.galgel 2900 445 380 295

179.art 2600 1238 924 379

183.equake 1300 220 528 233

187.facerec 1900 677 215 296

188.ammp 2200 405 272 283

189.lucas 2000 639 261 312

191.fma3d 2100 472 305 282

200.sixtrack 1100 273 205 169

301.apsi 2600 445 292 345

SPECfp_base2000
(geometric mean)

500 313 304

Figure 1.36 SPEC2000 performance for SPEC CFP2000. Reference time for each program is for a particular Sun
Microsystems Ultra 10 computer configuration. Base ratio is the measured execution time of an executable gener-
ated by conservative compiler optimization, which is required to be identical for each program, divided into the ref-
erence time and is expressed as a percentage. SPECfp_base2000 is the geometric mean of the 14 base ratio values; it
would be 100 for the reference computer system. The Compaq AlphaServer ES40 6/667 uses a 667 MHz Alpha
21164A microprocessor and an 8 MB off-chip tertiary cache. The IBM eServer pSeries 640 uses a 375 MHz Power3-II
CPU and a 4 MB off-chip secondary cache. The Intel VC820 uses a 1000 MHz Pentium III processor with a 256 KB on-
chip secondary cache. Data are from the SPEC Web site (www.spec.org).

82 � Chapter One Fundamentals of Computer Design

an exceptional condition. Is throughput (work per unit time) a consistent and
reliable performance measure for these programs? Why, or why not?

c. [15] <1.5> The fundamental unit of work that is of interest for programs such
as Web servers and database systems is the transaction. Many computer sys-
tems are able to pipeline the processing of transactions, thus overlapping
transaction execution times. What performance measurement error does the
use of throughput rather than transaction execution time avoid?

✪ 1.16 [15/15/15] <1.6> Three enhancements with the following speedups are proposed
for a new architecture:

Speedup1 = 30

Speedup2 = 20

Speedup3 = 15

Only one enhancement is usable at a time.

a. [15] <1.6> If enhancements 1 and 2 are each usable for 25% of the time, what
fraction of the time must enhancement 3 be used to achieve an overall
speedup of 10?

b. [15] <1.6> Assume the enhancements can be used 25%, 35%, and 10% of the
time for enhancements 1, 2, and 3, respectively. For what fraction of the
reduced execution time is no enhancement in use?

c. [15] <1.6> Assume, for some benchmark, the possible fraction of use is 15%
for each of enhancements 1 and 2 and 70% for enhancement 3. We want to
maximize performance. If only one enhancement can be implemented, which
should it be? If two enhancements can be implemented, which should be
chosen?

1.17 [10/10/10/15/10] <1.6, 1.9> Your company has a benchmark that is considered
representative of your typical applications. An embedded processor under consid-
eration to support your task does not have a floating-point unit and must emulate
each floating-point instruction by a sequence of integer instructions. This proces-
sor is rated at 120 MIPS on the benchmark. A third-party vendor offers a compat-
ible coprocessor to boost performance. That coprocessor executes each floating-
point instruction in hardware (i.e., no emulation is necessary). The processor/
coprocessor combination rates 80 MIPS on the same benchmark. The following
symbols are used to answer parts (a)–(e) of this exercise:

I—Number of integer instructions executed on the benchmark.

F—Number of floating-point instructions executed on the benchmark.

Y—Number of integer instructions to emulate one floating-point instruction.

W—Time to execute the benchmark on the processor alone.

B—Time to execute the benchmark on the processor/coprocessor combination.

a. [10] <1.6, 1.9> Write an equation for the MIPS rating of each configuration
using the symbols above.

Exercises � 83

b. [10] <1.6> For the configuration without the coprocessor, we measure that
F = 8 × 106, Y = 50, and W = 4 seconds. Find I.

c. [10] <1.6> What is the value of B?

d. [15] <1.6, 1.9> What is the MFLOPS rating of the system with the coprocessor?

e. [10] <1.6, 1.9> Your colleague wants to purchase the coprocessor even though
the MIPS rating for the configuration using the coprocessor is less than that of
the processor alone. Is your colleague’s evaluation correct? Defend your
answer.

✪ 1.18 [10/12] <1.6, 1.9> One problem cited with MFLOPS as a measure is that not all
FLOPS are created equal. To overcome this problem, normalized or weighted
MFLOPS measures were developed. Figure 1.37 shows how the authors of the
“Livermore Loops” benchmark calculate the number of normalized floating-point
operations per program according to the operations actually found in the source
code. Thus, the native MFLOPS rating is not the same as the normalized
MFLOPS rating reported in the supercomputer literature, which has come as a
surprise to a few computer designers.

Let’s examine the effects of this weighted MFLOPS measure. The SPEC
CFP2000 171.swim program runs on the Compaq AlphaServer ES40 in 287 sec-
onds. The number of floating-point operations executed in that program are listed
in Figure 1.38.

a. [10] <1.6, 1.9> What is the native MFLOPS for 171.swim on a Compaq
AlphaServer ES40?

b. [12] <1.6, 1.9> Using the conversions in Figure 1.37, what is the normalized
MFLOPS?

1.19 [30] <1.5, 1.9> Devise a program in C that gets the peak MIPS rating for a com-
puter. Run it on two machines to calculate the peak MIPS. Now run SPEC
CINT2000 176.gcc on both machines. How well do peak MIPS predict perfor-
mance of 176.gcc?

Real FP operations Normalized FP operations

Add, Subtract, Compare, Multiply 1

Divide, Square root 4

Functions (Exponentiation, Sin, . . .) 8

Figure 1.37 Real versus normalized floating-point operations. The number of
normalized floating-point operations per real operation in a program used by the
authors of the Livermore FORTRAN kernels, or “Livermore Loops,” to calculate MFLOPS.
A kernel with one Add, one Divide, and one Sin would be credited with 13 normalized
floating-point operations. Native MFLOPS won’t give the results reported for other
machines on that benchmark.

84 � Chapter One Fundamentals of Computer Design

1.20 [30] <1.5, 1.9> Devise a program in C or FORTRAN that gets the peak MFLOPS
rating for a computer. Run it on two machines to calculate the peak MFLOPS.
Now run the SPEC CFP2000 171.swim benchmark on both machines. How well
do peak MFLOPS predict performance of 171.swim?

1.21 [20/20/25] <1.7> Vendors often sell several models of a computer that have iden-
tical hardware with the sole exception of processor clock speed. The following
questions explore the influence of clock speed on performance.

a. [20] <1.7> From the collection of computers with reported SPEC CFP2000
benchmark results at www.spec.org/osg/cpu2000/results/, choose a set of
three computer models that are identical in tested configurations (both hard-
ware and software) except for clock speed. For each pair of models, compare
the clock speedup to the SPECint_base2000 benchmark speedup. How
closely does benchmark performance track clock speed? Is this consistent
with the description of the SPEC benchmarks on pages 28–30?

b. [20] <1.7> Now the workload for the computers in part (a) is as follows: a
user launches a word-processing program, opens the file of an existing five-
page text document, checks spelling, finds no errors, and finally prints the
document to an inkjet printer. Suppose the execution time for this benchmark
on the slowest clock rate model is 1 minute and 30 seconds, apportioned in
this way: 5 seconds to load the word-processing program and the chosen doc-
ument file from disk to memory, 5 seconds for the user to invoke spell check-
ing, 1 second for spell checking to complete, 2 seconds for the user to absorb
the information that there are no spelling errors, 5 seconds for the user to ini-
tiate the printing command, 2 seconds for the printing dialog box to appear, 2
seconds for the user to accept the default printing options and command that
printing proceed, 8 seconds for the printer to start, and 1 minute to print the
five pages.

Floating-point operation Times executed

load 77,033,084,546

store 22,823,523,329

copy 4,274,605,803

add 41,324,938,303

sub 21,443,753,876

mul 31,487,066,317

div 1,428,275,916

convert 11,760,563

Total 199,827,008,653

Figure 1.38 Floating-point operations in SPEC CFP2000 171.swim.

Exercises � 85

User think time—the time it takes for a human to respond after waiting for a
computer reply in interactive use—improves significantly when the computer
can respond to a command quickly because the user maintains better mental
focus. Assume that for computer response times less than 2 seconds, any
computer response time improvement is matched by double that amount of
improvement in the human response time, bounded by a 0.5 second minimum
human response time.

What is the clock speedup and word-processing benchmark speedup for each
pair of computer models? Discuss the importance of a faster processor for
this workload.

c. [25] <1.7> Choose a desktop computer vendor that has a Web-based store and
find the price for three systems that are configured identically except for pro-
cessor clock rate. What is the relative price performance for each system if
the workload execution time is determined only by processor clock speed
($ per MHz)? What is the relative price performance ($ per second) for each
system if, during a workload execution time total of 100 seconds on the slow-
est system, the processor is busy 5% of the time and other system components
and/or the user are busy the other 95% of the time?

1.22 [30] <1.5, 1.7> Find results from different benchmark sets, for example, PC ver-
sus SPEC benchmarks, and compare their performance measurements for two
related processors, such as the Pentium III and Pentium 4. Discuss reasons for the
differences in performance.

1.23 [20] <1.5, 1.8> Assume that typical power consumption for the 667 MHz Alpha
21164A, 375 MHz Power3-II, and 1000 MHz Pentium III processors is 50, 27,
and 35 W, respectively. Using data from Figure 1.36 and scaling to the perfor-
mance of the Pentium III, create a graph showing the relative performance and
the relative performance per watt of these three processors for 171.swim,
183.equake, 301.apsi, and SPECfp_base2000.

1.24 [25] <1.4, 1.8> Design goals for a desktop computer system besides price and
performance might include reducing size and noise. Assume that room air is
available for cooling. Develop a simple model, similar to the cost model of Figure
1.10, that identifies the sources of additional system demands for power caused
by a watt of processor power and includes the transition from passive, convective
airflow to forced airflow cooling. Develop an analogous model showing the effect
of processor power on system volume. Describe the effect that processor power
consumption has on system noise and size.

1.25 [Discussion] <1.5> What is an interpretation of the geometric mean of execution
times? What do you think are the advantages and disadvantages of using (a) total
execution times versus (b) weighted arithmetic means of execution times using
equal running time on the SPARC versus (c) geometric means of ratios of speed
to the SPARC (used as the reference machine by SPEC2000)?

86 � Chapter One Fundamentals of Computer Design

1.26 [30] <1.5> SPEC2000 programs are often compiled at levels of optimization that
are almost never used by software that is sold commercially—and sometimes
using compilers that no one would use in a real product. Rerun SPEC2000 pro-
grams on machines for which you can find official ratings, but this time run bina-
ries of the programs compiled with simple optimization and no optimization.
Does relative performance change? What do you conclude about the machines?
About SPEC2000?

1.27 [Discussion] <1.5> PC benchmark suites use scripts to run programs as fast as
possible, that is, with no user think time, the time a real user would spend under-
standing the current program output before providing the next user input. Also, to
be sure to exercise new features of the latest version of the benchmark program,
apparently they exercise every option once. What are the disadvantages of this
approach? Can you think of compiler or architecture techniques that improve per-
formance for real users but are penalized by this style of benchmarking?

1.28 [Discussion] <1.6> Amdahl’s Law makes it clear that to deliver substantial per-
formance improvement, a design enhancement must be usable a large fraction of
the time. With this principle in mind, examine the table of contents for this text,
determine the major themes of computer design that are covered and the ranking
of specific techniques within the major topics, and discuss the extent to which
Amdahl’s Law is a useful dimension on which to organize the study of computer
design.

